vff PLIPO

Universidade Federal Fluminense

FACULDADE FEDERAL DE RIO DAS OSTRAS

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA (RCT)

Geometria Analítica e Cálculo Vetorial $1^{\underline{a}}$ Lista de Exercícios -1/2011

- 1. Se $A=(1,1),\,B=(2,2),\,C=(-1,0)$ e D=(1,0), então $\overrightarrow{AB}=\overrightarrow{CD}$? E AB=CD? Justifique.
- 2. Julgue a veracidade das afirmações abaixo assinalando (${\rm V}$) para verdadeiro ou (${\rm F}$) para falso. Justifique sua resposta !
 - () Se $\alpha \overrightarrow{u} + \beta \overrightarrow{v} = \overrightarrow{0}$, então $\alpha = 0$ e $\beta = 0$.
 - () Seja ABCD um quadrilátero. Se E é o ponto médio do lado AB e F é o ponto médio do lado DC, então $\overrightarrow{EF} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{BC})$.
 - () Se \overrightarrow{u} e \overrightarrow{v} são vetores no plano, então $\|\overrightarrow{u}\|\overrightarrow{v}$ e $\|\overrightarrow{v}\|\overrightarrow{u}$ são vetores de mesmo comprimento.
 - () Se \overrightarrow{u} e \overrightarrow{v} tem mesmo comprimento, então u-v e u+v são ortogonais.
 - () Se \overrightarrow{u} e \overrightarrow{v} são vetores no plano, então $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}||$.
 - () Se $\overrightarrow{u} \neq 0$ e $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot w$, então $\overrightarrow{v} = \overrightarrow{w}$.
 - () Se \overrightarrow{u} e \overrightarrow{v} são vetores no plano, então $\|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$.
 - $(\quad) \text{ Se } \overrightarrow{u} \text{ e } \overrightarrow{v} \text{ são vetores no plano, então } \|\overrightarrow{u} + \overrightarrow{v}\|^2 + \|\overrightarrow{u} + \overrightarrow{v}\|^2 = 2(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2).$
 - () Se \overrightarrow{u} e \overrightarrow{v} são vetores no plano, então $\|\overrightarrow{u} + \overrightarrow{v}\|^2 + \|\overrightarrow{u} \overrightarrow{v}\|^2 = 4\overrightarrow{u} \cdot \overrightarrow{v}$.
 - () Se $\overrightarrow{u} = (x, 1)$ e $\overrightarrow{v} = (x, -1)$ são ortogonais, então x = 1 e x = -1.
 - () Existe uma reta que contém os pontos A = (1,3), B = (-1,2) e C = (5,4).
 - () O triângulo determinado pelos vértices $A=(1,0),\ B=(0,2)$ e C=(-2,1) é retângulo.
 - () Todo ponto do plano é combinação linear dos vetores $\overrightarrow{u} = (2,3)$ e $\overrightarrow{v} = (1,\frac{3}{2})$.
 - () Se \overrightarrow{u} e \overrightarrow{v} não são nulos e $\Pr_{\overrightarrow{v}} \overrightarrow{u} = 0$, então $\overrightarrow{u} \perp \overrightarrow{v}$.

- () Toda a reta da forma y = ax + 3 5a passa pelo ponto (5,3).
- () O ponto P=(1,1) pertence à reta que passa pelo ponto Q=(1,2) na direção do vetor $\overrightarrow{v}=(1,1)$.
- 3. Responda as questões justificando ou dando um contra-exemplo.
 - a) $x^2 2x + 1 > 0$ para todo $x \in \mathbb{R}$?
 - b) $x^2 2x + 2 > 0$ para todo $x \in \mathbb{R}$?
 - c) $x^2 + 26x + \frac{1689}{10} > 0$ para todo $x \in \mathbb{R}$?
- 4. Para cada uma das equações abaixo esboçe no plano XY o conjuto dos pontos (x,y) cujas coordenadas satisfazem essa equação:
 - a) $x^2 5x + 6 = 0$;
 - b) $y^2 6y + 9 = 0$;
 - c) $x^2 + y^2 + 1 = 0$;
 - d) |x| + y = 0;
 - e) $(x^2 7x + 10)(y^2 7x + 6) = 0$;
 - f) $(x^2 + 1)(x y) = 0$;
 - g) $x^3 + x x^2y y = 0$;
 - h) $x^2 + y^2 = x$;
 - i) $x^2 + y^2 + y = 0$;
 - j) $x^2 + y^2 + x + y = 1$
 - k) $x^3 + xy^2 x^2y x + y y^3 = 0$;
- 5. Esboce o conjunto $X = \{(x, y); |y| \le x \le 3\}.$
- 6. Em cada um dos casos abaixo, esboce o conjunto dos pontos cujas coordenadas (x, y) cumprem as condições especificadas:
 - a) |x-3| < 1;
 - b) |x-3|=1;
 - c) $|x-3| \le 1 \text{ e } |y-2| \le 5;$
 - d) $|x-3| \le 1 \text{ e } |y-2| \le 5;$
 - e) $|x| \ge 2 e |y| \ge 3;$
 - f) xy = 0;
 - g) x > y;
 - $\mathrm{h}) \ x \ge y;$
 - i) $0 \le x \le y \le 1$;
 - j) $x^2 < y^2$;

k)
$$x^2 \le y^2$$
;

7. Considere a reta de equação y+x=2.

- a) O vetor $\overrightarrow{v}_1 = (-1,1)$ é paralelo à reta?
- b) O ponto (-1,1) pertence à reta?
- c) E os vetores $\overrightarrow{v}_2=(1,-1), \ \overrightarrow{v}_3=(1,2)$ e \overrightarrow{AB} , onde A=(0,2) e B=(2,0) são paralelos à reta?