Index of the slides:

DTT: the exchange rule i 2
DTT: the “unpack” rule 3
DTT: structural rulesiiii 4
DTT: type rules ...)
DTT: alternate rules for strong sumcoiiiiiiiiiian.. 6
DTT: Alternate rules for strong equalityc.coiiiii... 7
Adjunction diagrams 8
CONVETSIONS .« . oottt ettt e e e et e e e 9
Comprehension categories with unit 10
Comprehension categories with unit: a bijection 11
Comprehension categories with unit: big bijection 12
Comprehension categories with unit: three rules 13
Interpreting IIT and IIE in a CCompC, 14
Interpreting YT in a CCompC i 15
Interpreting SE* in a CCompC ..ottt 16
The “unpack” rule (2) ... 17
Rules for DT T ..o e 18

2008comprcat January 26, 2009 02:58

DTT: the exchange rule
In Jacobs (10.1) the exchange rule for DTT is stated like this:

x:oy: 7, AEM:p
Ny:m,x:00AFM:p

with a side-condition: “z is not free in 7”.
Let’s translate this:

Ei:ff, b:Bz, c:Cz, J;ﬁabc Fe. =E_

abed Zabed
6:14, 02057 b:Ba, d:DabC = each:Each

Note that if we had used ¢ : Cg, instead of ¢ : Cz
the bottom judgment would have made no sense.

Let’s make this shorter.

We can hide the annotations that indicate dependencies,

the types, and the “vector” marks:
FL:/T,b:B,c:C,d?ﬁFe:E d,b,c,(fFe a,b,c,dt e
Ei:/f, c:.C, b:B,cZZﬁ FeFE a,c,b, dre a,c,b,dF e

It is this last form that we will use.

Exercise: rewrite the first translation with

(a1:A1[], .-, an:Anlar, ..., an_1])
(dl:Dl[ala ey Gy bv CL ey
dm:Dilar, ...;an,b,c,dy, ..., dm—1])

—
&y
blgl
o S
o
(3}
=
([

and check that the rule becomes unbearably big.

2008comprcat January 26, 2009 02:58

DTT: the “unpack” rule
In Jacobs (10.1, but after 10.1.2) the strong
sum-elimination rule is stated as this:

Iz:Xx:071bkp:Type Tix:oy:7FQ:p[{z,y)/7]

t
I[,z:Xz:0.7F (unpack z as (x,y) in Q) : p (strong)

In an “unpack” term like
unpack P as (z,y) in Q

the “unpack” binds two variables in), x and v,
at the same time, and sets their values to the components
of the (dependent) pair P.

In the presence of m and 7’ we can define:
(unpack P as (z,y) in Q) := Qlx := 7P,y :=7'P].
Let’s change the “unpack” notation one step at a time:

unpack P as (x,y) in Q
= unpack P =:z,y in Q
= Qlz,y:=P]

Now let’s rewrite the rule:

T,z:3z:07bkp:Type Tix:0,y:7FQ:plz = (z,y)]
Iz:Xzx:07FQ[z,y:=2]:p

@A, p:(Sb:B.C) F D:Type @A, b:B,c:C + d:D]p := (b, c)]
Ez’:/ip:(Eb:B.C) Fd[b,c:=p]:D
@:A, (b, ¢):($b:B.C) - D:Type @:A,b:B,c:C + d:D[(b, ¢) := (b, c)]

@A, (b, ¢):($b:B.C) + d[b, ¢ := (b, c)]:D

a (be)FD @becrd
, (b,c) Fd[b,c:= (b,)]

a,(b,e)-D a,bckd
SET
a, (b,c) F d[b,c := (b,)]

a,(b,e)F D a,bctd
a,(b,c) Fd

YET

We will use the two last forms.

2008comprcat January 26, 2009 02:58

DTT: structural rules
These ones are used very often:

akFb a,bckd
s

Variabl ak- B
: v
ariable ab b
Substituti akFb a,bckD
: S
ubstitution o cF D
Weakek akFB atFC
eakeking: W bFC

These ones not so much:

aFb aF-B=DB

Conversion: P

Conbraction: a,bb/,ck-D .
ontraction: abcFD contr

Exch . a,b,c,d+ E L
xchange: acbdF E ©°

a,ckHd

aFB alte
a,bkc

a,bb,ck-d
a,b,ckd

contr

a,bc,dF e

a,c,b,dF e exch

Note: “Variable” is called “Projection” at [Jacobs].

2008comprcat January 26, 2009 02:58

DTT: type rules

We have four different type-formers:

singleton, (dependent) products, (dependent) sums, and equality.
For each one of them we have a type-building rule, an introduction

rule, and elimination rules.

There are several options for elimination rules

for dependent sums and equality.

In a system with “weak sums” the rule is YE~.
In a system with “strong sums” the rule is YET,

or, equivalently, ™ + 7’.

In a system with “weak equality” the rule is EqE™.
In a system with “strong equality” the rule is EqET,
or, equivalently, ee+ur (“externalization of equality”

plus “uniqueness of reflexivity”).

, . — 1 — 11 ab ¥
Singleton: F1 . P — 1E
Products: a,bk-C - a,blkc - abFb alb—c
roquets: at1IIb: B.C at b—c akc
S . a,b-C S atF- B a,bl—CZI See bel
s aFb: B.C a,b,ct (b,c) (See below)
Equality: o B E B g See bel
QA Y FWh =] a bk (b=b) (See below)
a-D abebd abV.ebD aberd
a,(bc) - d ab b, (b=b),crd 4
a,(b,e)F-D a,bctHd N a, b/, (b=0)FC a,bl—cEE+
a,(b,0) F d 2 ab b, (b=0)Fc d
akbbc akbc ab (b=1V) ak (b=0b)
! —— €e ; ur
atb atc abb="b akF(b=0b)=(b=0)

2008comprcat January 26, 2009 02:58

DTT: alternate rules for strong sum
Jacobs, 10.1.3 (i):
The rules 7 and 7’ can be defined from Y E7T:

abrC atb B

aFSh.C > aFB abbC abrb

a(boFB aberb
ab () at (b,c) A xE
akb = akb

a,btC

a,(b,c)Fb a,b-C a,b-C
s v
a,(b,c) - C a,b,ckc N
ak(bc) | at (bc) a, (b,c) Fe XE
. s

atc = alkc

The rule XE* can be defined from 7 and 7’:

a,(b,e)-D a,bckd
a,(b,c) Fd

+

a,bt-C 5
a,b-C at ¥b.C a,b,ck-d
—_—
a,bt=C a,(b,c) F b a, (b,c),b,ckd
77{_/ S
a,(b,c) Fc a, (b,c),ckd
S
= a,(b,c)Fd

2008comprcat January 26, 2009 02:58

DTT: Alternate rules for strong equality

The YET rule is equivalent to the two rules ee and ur,
that say that from “witnesses of equality” we can prove
external equality - i.e., that some terms are equal.

This equivalence YET <= (ee,ur) is of a different
nature from the ones that we have seen before -

this one uses 3/e/:= and lives intrinsically in the
(P+T) structure - it cannot be restricted to the T-part
(i.e., to the syntactical world).

a,bb,e + b
L by :=be:=r] withb=1 viae
= V[:=be:=r]withb=1"V viae
Ly

a,bb,e + e
L e[t :=be:=7r] withb=1 viae
= rt):=be:=r]withb=1 viae
n
= 7

2008comprcat January 26, 2009 02:58

Adjunction diagrams

c cold

a,b 7
a,b;cHd —
a,b;ch[b':—b,e:—r]l <~

d O

()=

—

a,b———a,b, bt

(o3) =

a,b;ckd
a,bickd[b,c:=p][pi=(b,c)]

d

a,bickd[p:=(b,c)]
a,bickd[p:=(b,c)]

d

()

(¢%)
(w)

(w2

a,b,b’;e,ckd[b =b" viae] a,bictd
a,b,b ;e ckd a,bi;ckd[p:=(b,c)]

d d
a,b,t/ a,b
a,b;d-fb
a,b;d-e

e
a,b

cold
E—

()

— a;pk-d[b,c:=p]
<]{a;pl—d[b,c::p]

0 (d
D a
cold b,C
= (%)
a;pkd[p:=(b,c)][b,c:=p]
'Z]{a;zl—dp P
I—D> d
< a

2008comprcat January 26, 2009 02:58

)

)—

a,b——a

(%)

(

a;ptd[b,c:=p]
a;pkd

()

a;d-f
a;d-Xb.e

b—e
a

Conversions
Conventions:

[-conversions first, then n-conversions.

Underlined names are terms.
(b=b) is the reflexivity term.

(Ab.c)b c[b =: b
Abfb = f
unpack (b,c) as (b,c) ind = d[b=:Db,
unpack (b, c) as (b,c¢) in d[(b,c) =: (b,c)] = d[(b,c) =
 dwithb=bvia (b=b) = d
dlb=: ¥/, (b=b) =: (b=b)'] with ¥/ = b via (b=b)’ d
a b F 2 g
ab F e L (Abe)b
a,bc F d d[b, c := (b, c)]
a,p F d = dp:=(bc)]b c:=p|
a,byc + d = d[with b="b viar]
a,bb,e,c F d dp’ :=b,e := r|[with V' = b via €]
Tx:oyx :o,AF p:Type Tyz:o, Alz/2'|FQ : plz/a]

Tyz:o0,2 :0,z:Eq,(x,2'),AF(Q with 2’ =z via 2) : p

a,bb',ckD a,b,cb=:b]Fd:D[b=:1V]

a, b/, (b="0),ct (d witht =bvia (b=10")): D

2008comprcat January 26, 2009 02:58

(weak)

Lo
)

=

)

~

(weak)

10

Comprehension categories with unit

Jacobs, 10.4.7 (p.616):

A fibration p : E — B with a terminal object functor 1: B — E
(where we know by lemma 1.8.8 that p 41 and that n; = id)
is comprehension category with unit if 1 has a right adjoint.
We call this right adjoint {—}.

Jacobs, 10.4.7 (p.616):
Definition of the functor E — B™:
its action on objects is X+—pex.

xXy——> . x < d:) —_— (fl)
1t 1 0t /1
{X}?{X} = pX d,e d, et d

The functor E — B~ is a comprehension category, i.e.,

it takes cartesian morphisms to pullback squares.

We want to check that the image of a cartesian morphism is a pullback.
Given two maps i+—a and i+—c, d such that

ar—c is well-defined, we need to construct a

mediating map i—a, b.

{11}41[&)(: - (%)& b
W VA

1
[{V} = (Y} > p¥

2008comprcat January 26, 2009 02:58

11

Comprehension categories with unit: a bijection

Jacobs, 10.4.9 (i):

In a CCwl, pack a morphism « : I — J in the base category,
and an object Y over J. Then the vertical morphisms 1/ — u*Y
are in bijection with morphisms from u to 7y in B/J.

v, o))
l —1 \Y ﬁb N (c)
I\

a,c

2008comprcat January 26, 2009 02:58

Comprehension categories with unit: big bijection
Jacobs, 10.4.9 (ii):

1L <—— (Qu*A)*1I 117
’*X. [[ppu* X <—uw*][, X
X= [I4X
u*A
L QuA I \A
W:u \\
J o4 K
A \ A
{x} {I1. X}
a,c;b-d
a; bt c—d

(o)== (i) (o)
et 7 Jetrena

(a,‘zic)\(d> () — ()
(%)
o ()

\
- \

a,c,d a, (c—d)

2008comprcat January 26, 2009 02:58

()

12

Comprehension categories with unit: three rules
Jacobs, 10.3.3:

The categorical interpretation of

the rules for dependent sums:

a,b-C / ﬂ xbc

a;b,ct (b, c) > a,b,c—=a,b (

a,b,c,d >abc

a,(b,e)FD abckd -
SE*
a,(b,c)Fd
Q

7d|—>a7

b\\

atD a,bckd a,b,c,d—a,(b,c),d—a,d

abord P li lJ l

a,b,c——a, (b,c)—a

(Oops, the diagram for YE~ is wrong)

2008comprcat January 26, 2009 02:58

13

Interpreting III and ITE in a CCompC
(Jacobs, 10.5.3)

* *
X} <—i1I (a,b> — <a>
f — Ax f a,b)—cl b— —v|ra)—(bb—>c)
c b—c
vty () = ()

/1{ /(?

(X} —>

{X} —= C a,bi

In the top left vertex of the diagram for IIE we have
omitted an iso to keep the diagram shorter: 17 = hV*7r% 11.

2008comprcat January 26, 2009 02:58

14

Interpreting >I in a CCompC
(Jacobs, 10.5.3)

17

)

<g—{©*
R
(¢

(f:9) g ak=(b,c)

X Y| YxY 2) =
< < lid $ <—
SxY < SxY < NxY (bzlc) —
11 ! X <*> |
v 1 0
I Y {X} —1 a’

2008comprcat January 26, 2009 02:58

15

16

Interpreting YE* in a CCompC

(Jacobs, 10.5.3)

2008comprcat January 26, 2009 02:58

The “unpack” rule (2)
In 10.1.2 Jacobs defines (for P : o x 7):

p unpack P as (z,y) in =

op unpack P as (z,y) in y
ie.,

P = zz,y:= P

P = ylx,y:= P

2008comprcat January 26, 2009 02:58

17

Rules for DTT

Conversion: = -——=——=—=-=----
al-b’
al-B
Projection: = --—-—---
a,bl-b
a,b,b’,c|-D a,b,b’,cl-d
Contraction:
a,b,c|-D a,b,cl-d
al-b a,b,cl|-D al-b a,b,cl-d
Substitution:
a,c|-D a,cl-d
al-B al-C al-B al-c
Weakening: = ----—----— = ——-—------
a,b|-C a,bl-c
a,b,c,d|-E a,b,c,d|-e
Exchange: ~ ----m----- —m-m—m—-—-
a,c,b,d|-E a,c,b,dl-e
Type: Intro: Elim:
al-*’
Singleton: - - mmmmm=
-1 | —* al-*7 =%
a,bl-C a,bl-c al-b al-bl->c
DepProds: = -—=—-----
al-Tlb:B.C al-bl->c al-c
a,b|-C al-B a,b|-C
DepSums: ~ --------= —---————o——o (see below)
al->b:B.C a,b,c|-(b,c)
al-B al-B
Equality: (see below)
a,b,b’ |-W[b=b’] a,bl-(b=b)
Elimination rules:
DepSums: Equality:
al-D a,b,cl-d a,b,b’,c|-D a,b,cl-d
Weak: = --mmmm—mm————o
a,(b,c) |-d a,b,b’, (b=b’),cl-d
a,(b,c)|-D a,b,c|l-d a,b,b’,(b=b’)|-C a,bl-c
Strong:
a, (b,c)|-d a,b,b’, (b=b’)|-c
al-b,c al-b,c al-(b=b’) al-(b=b)’
AltStrong:
al-b al-c al-b=b’ al-(b=b) >=(b=b)

2008comprcat January 26, 2009 02:58

18

