Index of the slides:

DTT: the exchange rule	2
DTT: the "unpack" rule	3
DTT: structural rules	4
DTT: type rules	5
DTT: alternate rules for strong sum	6
DTT: Alternate rules for strong equality	7
Adjunction diagrams	8
Conversions	9
Comprehension categories with unit	10
Comprehension categories with unit: a bijection	11
Comprehension categories with unit: big bijection	12
Comprehension categories with unit: three rules	13
Interpreting III and IIE in a CCompC	14
Interpreting ΣI in a CCompC	15
Interpreting ΣE^+ in a CCompC	16
The "unpack" rule (2)	
Rules for DTT	18

DTT: the exchange rule

In Jacobs (10.1) the exchange rule for DTT is stated like this:

$$\frac{\Gamma, x : \sigma, y : \tau, \Delta \vdash M : \rho}{\Gamma, y : \tau, x : \sigma, \Delta \vdash M : \rho}$$

with a side-condition: "x is not free in τ ".

Let's translate this:

$$\frac{\vec{a} \colon \vec{A}, b \colon B_{\vec{a}}, c \colon C_{\vec{a}}, \vec{d} \colon \vec{D}_{\vec{a}bc} \vdash e_{\vec{a}bc\vec{d}} \cdot E_{\vec{a}bc\vec{d}}}{\vec{a} \colon \vec{A}, c \colon C_{\vec{a}}, b \colon B_{\vec{a}}, \vec{d} \colon \vec{D}_{\vec{a}bc} \vdash e_{\vec{a}bc\vec{d}} \cdot E_{\vec{a}bc\vec{d}}}$$

Note that if we had used $c: C_{\vec{a}b}$ instead of $c: C_{\vec{a}}$ the bottom judgment would have made no sense.

Let's make this shorter.

We can hide the annotations that indicate dependencies, the types, and the "vector" marks:

$$\frac{\vec{a} \colon \vec{A}, b \colon B, c \colon C, \vec{d} \colon \vec{D} \vdash e \colon E}{\vec{a} \colon \vec{A}, c \colon C, b \colon B, \vec{d} \colon \vec{D} \vdash e \colon E} \qquad \frac{\vec{a}, b, c, \vec{d} \vdash e}{\vec{a}, c, b, \vec{d} \vdash e} \qquad \frac{a, b, c, d \vdash e}{a, c, b, d \vdash e}$$

It is this last form that we will use.

Exercise: rewrite the first translation with

$$\begin{array}{lll} (\vec{a} {:} \vec{A}) & := & (a_1 {:} A_1[\,], \ldots, a_n {:} A_n[a_1, \ldots, a_{n-1}]) \\ (\vec{d} {:} \vec{D}_{\vec{a}bc}) & := & (d_1 {:} D_1[a_1, \ldots, a_n, b, c], \ldots, \\ & & d_m {:} D_m[a_1, \ldots, a_n, b, c, d_1, \ldots, d_{m-1}]) \end{array}$$

and check that the rule becomes unbearably big.

DTT: the "unpack" rule

In Jacobs (10.1, but after 10.1.2) the strong sum-elimination rule is stated as this:

$$\frac{\Gamma, z : \Sigma x : \sigma.\tau \vdash \rho : \mathsf{Type} \quad \Gamma, x : \sigma, y : \tau \vdash Q : \rho[\langle x, y \rangle / z]}{\Gamma, z : \Sigma x : \sigma.\tau \vdash (\mathsf{unpack} \ z \ \mathsf{as} \ \langle x, y \rangle \ \mathsf{in} \ Q) : \rho} \ (\mathsf{strong})$$

In an "unpack" term like

unpack
$$P$$
 as $\langle x, y \rangle$ in Q

the "unpack" binds two variables in Q, x and y, at the same time, and sets their values to the components of the (dependent) pair P.

In the presence of π and π' we can define:

(unpack P as
$$\langle x, y \rangle$$
 in Q) := $Q[x := \pi P, y := \pi' P]$.

Let's change the "unpack" notation one step at a time:

$$\begin{array}{ll} & \text{unpack } P \text{ as } \langle x,y \rangle \text{ in } Q \\ \Rightarrow & \text{unpack } P =: x,y \text{ in } Q \\ \Rightarrow & Q[x,y := P] \end{array}$$

Now let's rewrite the rule:

$$\frac{\Gamma,z:\Sigma x:\sigma.\tau\vdash\rho:\mathsf{Type}\quad\Gamma,x:\sigma,y:\tau\vdash Q:\rho[z:=\langle x,y\rangle]}{\Gamma,z:\Sigma x:\sigma.\tau\vdash Q[x,y:=z]:\rho}$$

$$\frac{\vec{a}:\vec{A},p:(\Sigma b:B.C)\vdash D:\mathsf{Type}\quad\vec{a}:\vec{A},b:B,c:C\vdash d:D[p:=\langle b,c\rangle]}{\vec{a}:\vec{A},p:(\Sigma b:B.C)\vdash d[b,c:=p]:D}$$

$$\frac{\vec{a}:\vec{A},(b,c):(\Sigma b:B.C)\vdash D:\mathsf{Type}\quad\vec{a}:\vec{A},b:B,c:C\vdash d:D[(b,c):=\langle b,c\rangle]}{\vec{a}:\vec{A},(b,c):(\Sigma b:B.C)\vdash d[b,c:=(b,c)]:D}$$

$$\frac{\vec{a},(b,c)\vdash D\quad\vec{a},b,c\vdash d}{\vec{a},(b,c)\vdash d[b,c:=(b,c)]}$$

$$\frac{a,(b,c)\vdash D\quad a,b,c\vdash d}{a,(b,c)\vdash d[b,c:=(b,c)]}\ \Sigma \to +$$

$$\frac{a,(b,c)\vdash D\quad a,b,c\vdash d}{a,(b,c)\vdash d}\ \Sigma \to +$$

We will use the two last forms.

DTT: structural rules

These ones are used very often:

Variable:
$$\frac{a \vdash B}{a, b \vdash b} \text{ v}$$

Substitution:
$$\frac{a \vdash b \quad a, b, c \vdash D}{a, c \vdash D}$$
 s $\frac{a \vdash b \quad a, b, c \vdash d}{a, c \vdash d}$ s

Weakeking:
$$\frac{a \vdash B \quad a \vdash C}{a, b \vdash C}$$
 w $\frac{a \vdash B \quad a \vdash c}{a, b \vdash c}$ w

These ones not so much:

Conversion:
$$\frac{a \vdash b \quad a \vdash B = B'}{a \vdash b'}$$
 conv

Contraction:
$$\frac{a,b,b',c \vdash D}{a,b,c \vdash D}$$
 contr $\frac{a,b,b',c \vdash d}{a,b,c \vdash d}$ contr

Exchange:
$$\frac{a,b,c,d\vdash E}{a,c,b,d\vdash E} \text{ exch } \frac{a,b,c,d\vdash e}{a,c,b,d\vdash e} \text{ exch}$$

Note: "Variable" is called "Projection" at [Jacobs].

DTT: type rules

We have four different type-formers: singleton, (dependent) products, (dependent) sums, and equality.

For each one of them we have a type-building rule, an introduction rule, and elimination rules.

There are several options for elimination rules for dependent sums and equality.

In a system with "weak sums" the rule is ΣE^- . In a system with "strong sums" the rule is ΣE^+ , or, equivalently, $\pi + \pi'$.

In a system with "weak equality" the rule is EqE⁻. In a system with "strong equality" the rule is EqE⁺ or, equivalently, ee+ur ("externalization of equality" plus "uniqueness of reflexivity").

Singleton:
$$\frac{a \vdash *'}{a \vdash *' = *} \text{ 1E}$$

$$a \vdash b \vdash c$$

$$a \vdash b \vdash c$$

$$a \vdash b \vdash c$$

Products:
$$\frac{a,b \vdash C}{a \vdash \Pi b : B.C} \ \Pi \qquad \qquad \frac{a,b \vdash c}{a \vdash b \mapsto c} \ \Pi \Pi \qquad \qquad \frac{a \vdash b \quad a \vdash b \mapsto c}{a \vdash c} \ \Pi E$$

Sums:
$$\frac{a, b \vdash C}{a \vdash \Sigma b : B.C} \Sigma \qquad \frac{a \vdash B \quad a, b \vdash C}{a, b, c \vdash (b, c)} \Sigma I \qquad \text{(See below)}$$

$$\text{Equality:} \quad \frac{a \vdash B}{a,b,b' \vdash \mathbf{W}[b=b']} \ \text{Eq} \qquad \frac{a \vdash B}{a,b \vdash (b=b)} \ \text{EqI} \qquad \qquad (\text{See below})$$

$$\frac{a \vdash D \quad a, b, c \vdash d}{a, (b, c) \vdash d} \quad \Sigma E^{-} \qquad \qquad \frac{a, b, b', c \vdash D \quad a, b, c \vdash d}{a, b, b', (b = b'), c \vdash d} \quad Eq E^{-}$$

$$\frac{a, (b, c) \vdash D \quad a, b, c \vdash d}{a, (b, c) \vdash d} \quad \Sigma E^{+} \qquad \qquad \frac{a, b, b', (b = b') \vdash C \quad a, b \vdash c}{a, b, b', (b = b') \vdash c} \quad Eq E^{+}$$

$$\frac{a \vdash b, c}{a \vdash b} \quad \pi \qquad \frac{a \vdash b, c}{a \vdash c} \quad \pi' \qquad \qquad \frac{a \vdash (b = b')}{a \vdash b = b'} \quad \text{ee} \qquad \frac{a \vdash (b = b)'}{a \vdash (b = b)' = (b = b)} \quad \text{ur}$$

DTT: alternate rules for strong sum

Jacobs, 10.1.3 (i):

The rules π and π' can be defined from ΣE^+ :

$$\frac{a \vdash (b,c)}{a \vdash b} \pi := \frac{a \vdash (b,c)}{\frac{a \vdash \Sigma b.C}{a}} \sum_{a \vdash B} w \frac{a,b \vdash C}{a,b \vdash b} \frac{a \vdash B}{a,b \vdash b} v \\ \frac{a \vdash (b,c)}{a,b,c \vdash b} \pi := \frac{a \vdash (b,c)}{\frac{a,(b,c) \vdash B}{a,b \vdash C}} s \frac{a,(b,c) \vdash b}{a,(b,c) \vdash C} s \frac{a,b \vdash C}{a,(b,c) \vdash C} v \\ \frac{a \vdash (b,c)}{a \vdash c} \pi' := \frac{a \vdash (b,c)}{a \vdash c} s \vdash c s \frac{a,b \vdash C}{a,(b,c) \vdash c} s \frac{a,b \vdash C}{a,(b,c) \vdash c} s$$

The rule ΣE^+ can be defined from π and π' :

$$\begin{aligned} & \frac{a, (b, c) \vdash D \quad a, b, c \vdash d}{a, (b, c) \vdash d} \ \Sigma E^+ \\ & \frac{a, b \vdash C}{\overline{a, (b, c) \vdash c}} \ \pi' \ \frac{\frac{a, b \vdash C}{\overline{a, (b, c) \vdash b}} \ \pi \ \frac{\frac{a, b \vdash C}{a \vdash \Sigma b.C} \ \Sigma \ a, b, c \vdash d}{a, (b, c), b, c \vdash d} \ \mathbf{s} \\ & \coloneqq & a, (b, c) \vdash d \end{aligned} \ \mathbf{v} \end{aligned}$$

DTT: Alternate rules for strong equality

The ΣE^+ rule is equivalent to the two rules ee and ur, that say that from "witnesses of equality" we can prove external equality - i.e., that some terms are equal. This equivalence $\Sigma E^+ \iff (\text{ee, ur})$ is of a different nature from the ones that we have seen before - this one uses $\beta/\epsilon/:=$ and lives intrinsically in the (P+T) structure - it cannot be restricted to the T-part (i.e., to the syntactical world).

Adjunction diagrams

$$\begin{pmatrix} c \\ a,b \end{pmatrix} \stackrel{\text{co}\square}{\Longrightarrow} \begin{pmatrix} (b=b'),c \\ a,b,b' \end{pmatrix} \qquad \begin{pmatrix} c \\ a,b \end{pmatrix} \stackrel{\text{co}\square}{\Longrightarrow} \begin{pmatrix} b,c \\ a \end{pmatrix}$$

$$\stackrel{a,b;c\vdash d}{\Longrightarrow} \stackrel{a,b;c\vdash d}{\Longrightarrow} \stackrel{\text{co}\square}{\Longrightarrow} \begin{pmatrix} b,c \\ a \end{pmatrix} \stackrel{\text{a};p\vdash d[b,c:=p]}{\Longrightarrow} \stackrel{\text{a};p\vdash d[b,c:=p]}{\Longrightarrow} \stackrel{\text{a};p\vdash d[b,c:=p]}{\Longrightarrow} \stackrel{\text{a};p\vdash d}{\Longrightarrow} \stackrel{\text{co}\square}{\Longrightarrow} \stackrel{\text{co$$

Conversions

Conventions:

 β -conversions first, then η -conversions.

Underlined names are terms.

(b=b) is the reflexivity term.

$$(\lambda b.\underline{c})\underline{b} = \underline{c}[\underline{b} =: b]$$

$$\lambda b.\underline{f}\underline{b} = \underline{f}$$

$$\text{unpack } \langle \underline{b}, \underline{c} \rangle \text{ as } \langle b, c \rangle \text{ in } \underline{d} = \underline{d}[\underline{b} =: b, \underline{c} =: c]$$

$$\text{unpack } \underline{(b, c)} \text{ as } \langle b, c \rangle \text{ in } \underline{d}[\langle b, c \rangle =: (b, c)] = \underline{d}[(b, c) =: (b, c)]$$

$$\underline{d} \text{ with } b = b \text{ via } \underline{(b = b)} = \underline{d}$$

$$\underline{d}[b =: b', \underline{(b = b)} =: (b = b)'] \text{ with } b' = b \text{ via } \overline{(b = b)'} = \underline{d}$$

$$a \vdash f \stackrel{\beta}{=} \lambda b.fb$$

$$a, b \vdash e \stackrel{\eta}{=} (\lambda b.e)b$$

$$a, b, c \vdash d = d[b, c := \langle b, c \rangle]$$

$$a, p \vdash d = d[p := \langle b, c \rangle][b, c := p]$$

$$a, b, c \vdash d = d[\text{with } b = b \text{ via } r]$$

$$a, b, b', e, c \vdash d = d[b' := b, e := r][\text{with } b' = b \text{ via } e]$$

$$\frac{\Gamma, x:\sigma, x':\sigma, \Delta \vdash \rho: \mathsf{Type} \quad \Gamma, x:\sigma, \Delta[x/x'] \vdash Q:\rho[x/x']}{\Gamma, x:\sigma, x':\sigma, z: \mathsf{Eq}_{\sigma}(x,x'), \Delta \vdash (Q \text{ with } x'=x \text{ via } z):\rho} \text{ (weak)}$$

$$\frac{a,b,b',c \vdash D \quad a,b,c[b=:b'] \vdash d:D[b=:b']}{a,b,b',(b=b'),c \vdash (d \text{ with } b'=b \text{ via } (b=b')):D} \text{ (weak)}$$

Comprehension categories with unit

Jacobs, 10.4.7 (p.616):

A fibration $p: \mathbb{E} \to \mathbb{B}$ with a terminal object functor $1: \mathbb{B} \to \mathbb{E}$ (where we know by lemma 1.8.8 that $p \dashv 1$ and that $\eta_I = \mathrm{id}$) is comprehension category with unit if 1 has a right adjoint. We call this right adjoint $\{-\}$.

Jacobs, 10.4.7 (p.616): Definition of the functor $\mathbb{E} \to \mathbb{B}^{\to}$: its action on objects is $X \mapsto p \varepsilon_X$.

The functor $\mathbb{E} \to \mathbb{B}^{\to}$ is a comprehension category, i.e., it takes cartesian morphisms to pullback squares. We want to check that the image of a cartesian morphism is a pullback. Given two maps $i{\mapsto}a$ and $i{\mapsto}c,d$ such that $a{\mapsto}c$ is well-defined, we need to construct a mediating map $i{\mapsto}a,b$.

2008comprcat January 26, 2009 02:58

Comprehension categories with unit: a bijection

Jacobs, 10.4.9 (i):

In a CCw1, pack a morphism $u:I\to J$ in the base category, and an object Y over J. Then the vertical morphisms $1I\to u^*Y$ are in bijection with morphisms from u to π_Y in \mathbb{B}/J .

Comprehension categories with unit: big bijection $\rm Jacobs,\,10.4.9~(ii):$

$$\begin{array}{l} a,c;b\vdash d\\ a;b\vdash c{\mapsto} d \end{array}$$

 $2008 compreat\ January\ 26,\ 2009\ 02{:}58$

Comprehension categories with unit: three rules

Jacobs, 10.3.3:

The categorical interpretation of the rules for dependent sums:

$$\frac{a, b \vdash C}{a; b, c \vdash (b, c)} \Sigma I$$

$$a, b, c \longmapsto a, b \qquad b, c \downarrow$$

$$a, (b, c) \vdash D \qquad a, b, c \vdash d$$

$$a, (b, c) \vdash D \qquad a, b, c \vdash d$$

$$a, (b, c) \vdash d \qquad \Sigma E^{+}$$

$$a, b, c, d \longmapsto a, b, c$$

$$a, (b, c), d \longmapsto a, (b, c)$$

$$a, b, c, d \longmapsto a, (b, c), d \longmapsto a, d$$

$$a, b, c, d \longmapsto a, (b, c), d \longmapsto a, d$$

$$a, b, c, d \longmapsto a, (b, c), d \longmapsto a, d$$

(Oops, the diagram for ΣE^- is wrong)

Interpreting III and IIE in a CCompC (Jacobs, 10.5.3)

In the top left vertex of the diagram for IIE we have omitted an iso to keep the diagram shorter: $1I \cong h^{\vee *}\pi_X^*1I$.

Interpreting ΣI in a CCompC (Jacobs, 10.5.3)

Interpreting ΣE^+ in a CCompC (Jacobs, 10.5.3)

The "unpack" rule (2) In 10.1.2 Jacobs defines (for $P : \sigma \times \tau$): $\pi P \stackrel{\text{def}}{=} \text{unpack } P \text{ as } \langle x, y \rangle \text{ in } x$ $\pi' P \stackrel{\text{def}}{=} \text{unpack } P \text{ as } \langle x, y \rangle \text{ in } y$ i.e., $\pi P := x[x, y := P]$ $\pi' P := y[x, y := P]$

Rules for DTT

Conversion:	a -b a -B=B' a -b'			
Projection:	a -B a,b -b			
Contraction:	a,b,b',c -D a,b,c -D	a,b,b',c -d a,b,c -d		
Substitution	a -b a,b,c -D a,c -D	a -b a,b,c a,c -d		
Weakening:	a -B a -C a,b -C	a -B a -c a,b -c		
Exchange:	a,b,c,d -E a,c,b,d -E	a,b,c,d -e a,c,b,d -e		
	Type:	Intro:	Elim:	
			a -*'	
Singleton:	-1	 -*	a -*'=*	
DepProds:	a,b -C	a,b -c	a -b a -b ->c	
	a -∏b:B.C	a -b ->c	a -c	
DepSums:	a,b -C	a -B a,b -C	(see below)	
	a -∑b:B.C	a,b,c -(b,c)		
Equality:	a -B	a -B	(see below)	
$a,b,b' \mid -W[b=b']$ $a,b \mid -(b=b)$ Elimination rules: Equality:				
Weak:	a -D a,b,c -d	a,b,b',c -D a,b,c -d		
	a,(b,c) -d	(b,c) -d a,b,b',(b=b'),c -d		
Strong:	a,(b,c) -D a,b,c a,(b,c) -d	a,b,b',(b=b') -C a,b -c a,b,b',(b=b') -c		
	a,(b,c) -u a -b,c a -b,c	a -(b=b')		
AltStrong:		a -(b-b') a -b=b'		
	al-b al-c	a -b-b'	a1-(n-n)(n-n)	

 $2008 \mathrm{compreat}$ January 26, 2009 02:58