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Non-Standard Analysis
The main idea:
Set is the “standard universe”,
SetN is the “universe of (N-)sequences”,
SetN/N is the “universe of N-sequences modulo ∼N ”,
SetN/U is the “universe of N-sequences modulo ∼U”,
where ∼N is the equivalence relation induced by the filter N ,
and ∼U is the equivalence relation induced by the ultrafilter U ,
where ∼U has bigger classes than ∼N.

Set SetN// SetN SetN/N//SetN

SetN/U
��?

??
??

??
??

SetN/N

SetN/U
��

Set → SetN takes 4 to (4, 4, 4, 4, . . .),
SetN → SetN/N takes (1, 1

2 , 1
3 , 1

4 , . . .) to (1, 1
2 , 1

3 , 1
4 , . . .)/N , and

equivalence classes of sequences tending to zero will
behave as infinitesimals.

SetN/U is a “non-standard universe”.
SetN and SetN/U are quite similar —
they both obey the same first-order formulas (!!!)
(with bounded quantifiers and all constants standard)
and we have “transfer theorems” that let us “transfer truths”
from Set to SetN/U and back.
And SetN/U has infinitesimals!!!
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Non-Standard Analysis (2)
The general case:
Set is the “standard universe”,
SetI is the “universe of (I-)sequences”,
SetI/F is the “universe of I-sequences modulo ∼F”,
SetI/U is the “universe of I-sequences modulo ∼U”,
where ∼F is the equivalence relation induced by the filter F ,
and ∼U is the equivalence relation induced by the ultrafilter U ,
where ∼U has bigger classes than ∼F .

Set SetI// SetI SetI/F//SetI

SetI/U
��?

??
??

??
??

SetI/F

SetI/U
��

F is a filter on the index set I,
U is an ultrafilter on I, refining F (i.e., F ⊂ U).
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Filters
Definition: F ⊆ P(I) is a filter on I iff:
(i) I ∈ F ,
(ii) F is closed by binary intersections,
(iii) F is “closed by supersets”.

Our two archetypical filters:

N ⊂ P(N)
N := { I ⊂ N | N\I is finite }
R0 ⊂ P(R)
R0 := { I ⊂ R | I contains an open neighborhood of 0 }

N is the “filter of cofinites” (on N),
R0 is the “filter of neighborhoods of 0” (in R).

Define the following relation on I-sequences:

a ∼F b ⇔ { i | ai = bi } ∈ F

Prop: ∼F is an equivalence relation ⇒ F is a filter.

a ∼F a ⇒ F 3 { i | ai = ai } = I,
a ∼F b ∼F c ⇒ F 3 { i | ai = ci } ⊇ { i | ai = bi } ∩ { i | bi = ci },

Look at this example (with I := R):
f is 0 in (−2, 1), 1 elsewhere,
g is 0 everywhere,
h is 0 in (−1, 2), −1 elsewhere,
h′ is 0 in (−1, 2), 1 in (4, 5), −1 elsewhere;
f coincides with h exactly on (−2, 1) ∩ (−1, 2),
f coincides with h′ on a bigger set — the above plus (4, 5).

Prop: ∼F is an equivalence relation ⇐ F is a filter.
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Proper filters, big/small/medium sets, and ultrafilters
Def: a filter F is proper when ∅ /∈ F .

F improper ⇔ ∅ ∈ F ⇔ F = P(I) ⇔
⇔ all sequences are F-equivalent.
N is proper.

Def: I ⊂ I is F-big when I ∈ F .
N + 4 = {4, 5, 6, 7, . . .} is cofinite, and so N -big.

Def: I ⊂ I is F-small when I ∈ F .
{0, 1, 2, 3} is finite, and so N -small.

Def: I ⊂ I is F-medium when I is neither F-big, nor F-small.
2N = {0, 2, 4, 6, ...} is N -medium.

A proper filter F divides P(I) in F-big, F-medium and F-small sets.
Def: an ultrafilter is a filter F with no F-medium sets.

We will use U to denote ultrafilters.
N is not an ultrafilter.

Two proper filters over I := {α, β, γ}:
The one at the right is an ultrafilter.
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For A ⊂ P(I),
Def: ↑ A := {A′ | A ⊆ A′ ⊆ I, for some A ∈ A}

↑ F = F .
Def: ↓ A := {A′ | A′ ⊆ A, for some A ∈ A}

The set of F-small sets is equal to its ‘↓’.
Def:

⋂
finA := {A1 ∩ . . . ∩An | n ∈ N, A1, . . . , An ∈ A}

where we define that A1 ∩ . . . ∩An = I when n = 0.

Fact: for any A ⊂ P(I),⋂
fin ↑ A =↑

⋂
finA is a filter.

N =↑
⋂

fin{N, N + 1, N + 2, N + 3, . . .}
R0 =↑

⋂
fin{(−1, 1), (− 1

2 ,− 1
2 ), (− 1

3 ,− 1
3 ), . . .}
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Cores and principal ultrafilters
The core of a filter F is

⋂
F .

N has empty core.
R0 has core = {0}, but this can be “fixed” —
by removing {0} from each R0-big set we get a
filter over R\{0} — the filter of
“punctured neighborhoods” of 0 ∈ R, that has
empty core.

(By the way: N is a filter of punctured
neighborhoods of ∞ ∈ N∗ in N∗\{∞}.)

Any ultrafilter refining N has empty core.
An ultrafilter with a non-empty core has a single point in its core.
An ultrafilter with a non-empty core is called “principal”.
Principal ultrafilters are silly: if U =↑ {a}
then the equivalence relation ∼U pays attention only
to the index a, and Set ∼= SetI/U .

Set SetN// SetN SetN/N//SetN

SetN/U
��?

??
??

??
??

SetN/N

SetN/U
��

When U is non-principal
every infinite set in Set
gets new (“non-standard”) elements
after the passage to SetI/U .
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Interpreting some sentences
Take ω := (1, 2, 3, 4, . . .) in SetN/N .
ω is bigger than any standard natural:
ω > 2 ≡ (`, `,>,>, . . .) ∼N (>,>,>,>, . . .) ≡ >

Take ε := (1, 1
2 , 1

3 , 1
4 , . . .) in SetN/N .

ε is smaller than any standard positive real:
ε < 1

2 ≡ (`, `,>,>, . . .) ∼N >.

f(a) is (f1(a1), f2(a2), f3(a3), . . .).

∀a, b ∈ R.ab = ba

∀x ∈ (0, 1).x2 ∈ (0, x)

∀a, b ∈ R.ab = 0 ��(a = 0 ∨ b = 0)
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Ultrafilters are evil
Take a denumerable family of sets of indices, A = {A1, A2, A3, . . .},
for example A := {N, 2N, 3N, 4N, . . .}.
Then ↑

⋂
finA is not a non-principal ultrafilter.

Let’s see why.
Take A′ := {A1, A1 ∩A2, A1 ∩A2 ∩A3, . . .};
build A′′ from that by removing the repetitions.
In the non-trivial case, A′′ = {A′′1 , A′′2 , A′′3 , . . .} is infinite.
Look at
(I\A′′1) ∪ (A′′2\A′′3) ∪ (A′′4\A′′5) ∪ . . . and
(A′′1\A′′2) ∪ (A′′3\A′′4) ∪ (A′′5\A′′6) ∪ . . . —
they are both medium sets.

Attempts to build non-principal explicitly are bound to fail.
To build non-principal ultrafilters we need a weak form of AC.
Halpern 1964: the “boolean prime ideal theorem” is independent from AC.

2008filterp-slides September 17, 2008 07:55



9

Partial functions with big domains
If (X,X ) and (Y,Y) are filtered spaces —
i.e., X is a filter over X
and Y is a filter over Y —
then a partial function f : X → Y is said
to have (X -)big domain when its domain is X -big.

Shorter name: a “big partial function” is a
partial function with a big domain.
Even shorter: → “big function”.

Filter-continuity
A partial function f : X → Y is (filter-)continuous when
the inverse image of every Y-big set is X -big.
(Being “big” is weaker than that: just f−1(Y ) ∈ X .)

Two big functions f, g are equivalent when
they coincide on a big set.

Big continuous functions compose.
Moreover: if f ∼X f ′ and g ∼Y g′ are all big and continuous,
then g ◦ f ∼X g′ ◦ f ′ is big and continuous.

(X,X )

(Y,Y)

f

��

(X,X )

(Y,Y)

f ′

��
(Y,Y) (Z,Z)

g′ //(Y,Y) (Z,Z)
g

//

(X,X )

(Z,Z)
""
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Diagram

o

o,O

_

��
o,O

o,o′

_

��

o f(b + o)� //

o,O f(b) + f ′(b)o + Oo2� //

o,o′

f(b) + f ′(b)o + o′o
)

44iiiiiiii
o,o′

f(b) + (f ′(b) + o′)o

�
**UUUUUUUU

f(b + o)

f(b) + f ′(b)o + Oo2f(b) + f ′(b)o + Oo2

f(b) + f ′(b)o + o′of(b) + f ′(b)o + o′o

f(b) + (f ′(b) + o′)o

ω

ω,o′

_

��

a
ω

oo

o,o′

_

��

log(1 + a
ω )

log(1 + o)log(1 + o)

(1 + o′)o

ω

a
ω

/

77oooooooo

a
ω log(1 + a

ω )� //

ω

o

�

''OOOOOOOO

o log(1 + o)� //

ω,o′

o,o′
�

''OOOOO

o,o′ (1 + o′)o� //

ω

ω,o′

_

��
ω,o′

o′

_

��
o′

o′′




$$JJJJJJJJJJJJJ

o′′

o′′′

_

��

log(1 + a
ω )ω

ω log(1 + a
ω )ω log(1 + a
ω )

ω((1 + o′) a
ω )ω((1 + o′) a
ω )

(1 + o′)a

(1 + a
ω )ω

e(1+o′)ae(1+o′)a

ea+o′aea+o′a

ea+o′′ea+o′′

ea + o′′′

log(1 + a
ω )ω (1 + a

ω )ω� exp //

(1 + o′)a e(1+o′)a� exp //

ω

log(1 + a
ω )ω

*
44jjjjjjjjω

ω log(1 + a
ω )

�
**TTTTTTTT

ω,o′ ω((1 + o′) a
ω )� //

o′

(1 + o′)a

4

::tttttttttttt
o′ ea+o′a� //

o′′ ea+o′′� //

o′′′ ea + o′′′� //
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Filters are enough
Main theorem
Change of base
Filter-continuity is the same as continuity at the chosen point:

(R,R0) → (X,Xx0)

Filter-continuity is the same as infinitesimality:

(I,F) → (R,R0)

(general case: topological spaces)
Definition: the natural infinitesimal on a (standard) filtered space (X,Xx0),

that we will denote by x\
1

\∼ x0, is the identity function x\
1 = id : (X,Xx0) →

(X,Xx0); seen as an infinitesimal, it lives in SetX/Xx0 . As it corresponds to the
identity map, any other infinitesimal x1 ∼ x0 — in the diagram below we take
an x1 living in SetI/F — factors through x\

1 it in a unique way; this suggests
that there is a kind of “change of base” operation between filter-powers.

(I,F) (X,Xx0)
x1 //(I,F)

(X,Xx0)
x1 &&MMMMMM

(X,Xx0)

(X,Xx0)
x\
1=id��

Now, for any f : (X,Xx0) → (Y,Yy0) taking x0 to y0, this holds:

Key theorem:
(i) f is continuous at x0

⇔ (ii) for (I,F) := (X,Xx0), x\
1

\∼ x0, we have f(x\
1) ∼ f(x0)

⇔ (iii) for all (I,F) and x1 ∼ x0, we have f(x1) ∼ f(x0).

(X,Xx0)

(X,Xx0)

x\
1

��

(X,Xx0)

(Y,Yy0)

y1

$$HH
HH

HH
HH

(X,Xx0) (Y,Yy0)f
//

(I,F)

(X,Xx0)

x1 ��9
99

99
9

(I,F)

(Y,Yy0)

y1

((PPPPPPPPPPP

(X,Xx0) (Y,Yy0)f
//

x

x

_

x\
1

��

x

y

�
y1

""DD
DD

DD
DD

D

x y�
f

//

i

x

y

x1
��9

99
99

99
9i

y

�
y1

''OOOOOOOOOOOOOOO

x y�
f

//

Proof: (i) ⇒ (ii) and (i) ⇒ (iii) are obvious from what we’ve seen before —
that the composite of continuous maps between filtered spaces is continuous. For
¬(i) ⇒ ¬(ii), as f is not continuous at x0, we can choose a Y ′ ∈ Yy0 such that
f−1(Y ′) /∈ Xx0 ; but then y−1

1 (Y ′) = x\−1

1 (f−1(Y ′)) /∈ Xx0 , and f(x\
1) 6∼ f(x0).
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For ¬(i) ⇒ ¬(iii), take (I,F) := (X,Xx0), x1 := x\
1, and reuse the proof of ¬(i)

⇒ ¬(ii).

In texts about Non-Standard Analysis the infinitesimal
characterization of continuity is presented in another form:

(i) f is continuous at x0

⇔ (iv) for all (I,U) and x1 ∼ x0, we have f(x1) ∼ f(x0).

Clearly, (iii)⇒(iv); but to show that (iv) implies the rest we need to be in a
universe with enough ultrafilters.

Each of the cells in the diagram in sec. 5 is an instance of the key theorem —
maybe slightly disguised. For example, to prove that g(b+o) = (g′(b)+o′)o we
may start with g(b+o)

o −g′(b) = o′, for an infinitesimal o 6= 0, i.e., limε→0
g(b+o)

o .
What really matters, when we look at the diagrams, is that for any (I,F) and

for any infinitesimal x1 : (I,F) → (X,Xx0) — maybe obeying some condition,
like o 6= 0 — there is a unique “adequate” infinitesimal y1 : (I,F) → (Y,Yy0); we
want to “represent” the operation x1 7→ y1 as a function f : (X,Xx0) → (Y,Yy0),
and we can do that trivially by setting (I,F) := (X,Xx0), x1 := x\

1; then we
can take f := y1, and the f obtained in this way works in the general case.

(I,F)

(X,Xx0)

x1

��

(I,F)

(Y,Yy0)

y1

!!DD
DD

DD
DD

D

(X,Xx0) (Y,Yy0)f
//

� //

(X,Xx0)

(X,Xx0)

x\
1

��

(X,Xx0)

(Y,Yy0)

y1

##GGGGGGGGGG

(X,Xx0) (Y,Yy0)f :=y1

//

Applying this idea to the composite of all cells in the example in sec. 5, we
get this:

i

ω

_

��

i

o′′′

�

""EEEEEE

ω o′′′� //ω

h5

_

��

o′′′

h9

_

��
h5 h9

n

ω

_
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o′′′




&&MMMMMMMMM

ω o′′′� //ω

(1 + a
ω )ω

_

��

o′′′

ea + o′′′

_

��
(1 + a

ω )ω ea + o′′′

n

(1 + a
ω )n

_

��

n

ea + o′′′(n)

�

��?
??

??
??

??
??

??
?

(1 + a
ω )n ea + o′′′(n)

where i ∈ (I,F), n, ω ∈ (N,N ), and all the other “points” live in (R,R0). Note
that the ‘7→’ arrows in this diagram do not stand for functions in the usual sense,
but for functions between filtered spaces (not necessarily total). Incidentally,
all of them are continuous.
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