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Haskell

-- (find-libhugsfile "libraries/Hugs/Prelude.hs")

foldl :: (a->b->a) ->a->[b] > a
foldl f z [] =z
foldl f z (x:xs) foldl £ (f z x) xs

foldll :r (a->a->a) > [a] > a
foldll f (x:xs) = foldl f x xs

-- foldll max [1, 3, 2, 4]

---> foldl max 1 [3, 2, 4]

---> foldl max (max 1 3) [2, 4]

-—-> foldl max (max (max 1 3) 2) [4]

-—-> foldl max (max (max (max 1 3) 2) 4) []

-——> (max (max (max 1 3) 2) 4)
-——> (max (max 3 2) 4)
—-——> (max 3 4)
-—=> 4
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Type theory: origins
(From the introduction to 25 Years of Automath:)

In order to prevent the paradoxes, Whitehead and Russell analysed
the vicious circles present in all the known paradoxes. They came
to the conviction that a hierarchy was necessary for a sound devel-
opment of arithmetic and they proposed a type system: the simple
type theory. It turned out that a refinement was necessary, which
they called the ramified theory of types. This worked as they de-
sired, albeit they needed an extra axiom, in order to “soften” the
strictness of the typing hierarchy. Only with this axiom of reducibil-
ity they were able to incorporate full arithmetic, in particular the
real numbers, based on Dedekind cuts.

This idea of using types emerged quite naturally, once the vicious
circles had been detected. In fact, one may say that types existed
since early mathematics was developed: categories like ‘natural num-
ber’ and ‘real number’ in calculus, or ‘point’ and ‘line’ in geometry,
grouped elements together in clusters with a common meaning or
structure. In this sense, types were meant to emphasize the sim-
ilarities between given entities. But at the same time, types can
be of use in establishing differences between entities. The latter as-
pects turned out to be of great importance in combatting against
the paradoxes.
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Eilenbeg/MacLane 1945

From Ralf Kromer’s Tool and Object - A History and Philosophy of Cat-
egory Theory (p.65) on the reception of the first paper on Category Theory
(Eilenberg/MacLane: “General Theory of Natural Equivalences”, 1945):

The readyness to write down and submit for publication a work al-
most completely concerned with conceptual clarification (and with
the solution of some internal problems raised by the new concepts
themselves) is a remarkable expression of courage. While (as Corry
learned from Eilenberg, see [Corry 1996, 366 n.27]) Steenrod once
stated concerning [1945] that “no paper had ever influenced his
thinking more”, P.A. Smith said that “he had never read a more
trivial paper in his life”. [Mac Lane 1988a, 334] writes, without
mentioning a name: “One of our good friends (an admirer of Eilen-
berg) read the paper and told us privately that he thought that the
paper was without any content”.

Kromer, p.82, quoting Eilenberg/Steenrod 1952:

The reader will observe the presence of numerous diagrams in the
text. [...] Two paths connecting the same pair of vertices usually give
the same homomorphism. This is called a commutativity relation.
The combinatorially minded individual can regard it as a homology
relation due to the presence of 2-dimensional cells adjoined to the
graph. [...]

The diagrams incorporate a large amount of information. [...] In the
case of many theorems, the setting up of the correct diagram is the
major part of the proof [1952, xi].
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Type-checking and related problems
From Urzyczyn/Sorensen’s “Lectures on the Curry-Howard Isomorphism’

(online draft, p.89):

)

1. The type checking problem is to decide whether " = M : 7 holds,
for a given context I', a term M and a type 7.

2. The type reconstruction problem, also called typability problem,
is to decide, for a given term M, whether there exist a context I
and a type 7, such that I' = M : 7 holds, i.e., whether M is typable.

3. The type inhabitation problem, also called type emptiness prob-
lem, is to decide, for a given type 7, whether there exists a closed
term M, such that I' = M : 7 holds. (Then we say that 7 is non-
empty and has an inhabitant M).
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Weaker systems

Why do we want weaker systems?

Things that can be constructed in them may have nicer properties:
Every reduction sequence terminates.

All terms of type A x B — B x A are the flip function

Each proof in Natural Deduction corresponds to a lambda-term
Every term is typed

Type-checking can be used to detect errors

Weaker systems should have more models:
If a judgment J

is true in a stronger system S

but false in a weaker system W

then there should be a model of W

in which J is not collapsed to “true”.

How do we get intuition about weaker systems?
Stronger system: S, the universe of ZFC

Weaker system: W, where =—P = P is not “true”
All constructions in W can be carried out in S.
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Slides vs. brownie points

I have not been hired by UFF yet.

This is going to happen “at any moment” — since june.
http://angg.twu.net/concurso.html

I am (choose one):

e almost a university professor

e currently unemployed

e in unpayed holidays

e on strike

Articles would get me more brownie points from funding agencies,
but right now seminars and slides are more useful —

I need to discuss with local people, who are:

e algebraic geometers,

e (modal) logicians,

e computer scientists

e grad students who just had a CT course (that was “too algebraic”)
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Hyperdoctrines: subobjects and change-of-base
Our archetypal hyperdoctrine is this:
Cod: Sub(Set) — Set
(AA—A) — A

A linguistic trick:
everything will simplify A LOT if we pretend
that all subobject are subsets.
Another shorthand: ‘P’ instead of ‘P(a)’.
({a| P} — A) — A
{al P} — {alt) —  {al
{all P} — {a}
(@lpP) = a

We will downcase the projection functor, Cod, to (a||P) = a.
We will often draw it vertically and omit the ‘al]’ and the ‘=

fa| P} alP P P
S T

The change-of-base functors in Cod : Sub(Set) — Set
are induced by pullbacks:

fa| P(f(a)} 2 {a| P()}
_

f* ?PE(f’,f)
fp <~ P P P
<—'f*
A ! B Codl Cod
A—f> B A—f>B

The map P : {a || P(f(a))} — {b]| P(5)}

corresponds to a pullback square in Sub(Set).

It is a cartesian map in the fibration Cod : Sub(Set) — Set.
(We will see the abstract definition of cartesian maps later).
We will indicate cartesian maps with a ‘7.

We will downcase the change-of-base diagram as this:

O O
Pfa'——=Pb P ——=P
f
ar———b ar——b
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Hyperdoctrine: definition
Formally, a hyperdoctrine is a fibration for which:
(i) the base category is cartesian closed,
(ii) each fiber is bicartesian closed,
(iii) the change-of-base functors preserve the BiCCC structure modulo iso,
(iv) each change-of-base functor has a left adjoint
obeying Beck-Chevalley and Frobenius,
(v) each change-of-base functor has a right adjoint
obeying Beck-Chevalley and Frobenius.

The base category is (bi)cartesian closed:

/a\ a a,b<——=a
b<—bc——>c * c— b—c

a—>=allb<—b 1

N

C a

Each fiber is bicartesian closed:
P&Q <P

SN T 1=

If
Q<—Q&R+—=R T R=Q@>R
L

Pr—=PVvVQ~<HQ

ANV

R
Left adjoints (3/&=/3=) and right adjoints (V/ > =/V=)

for change-of-base functors:

Pab =>3b.Pab Pab=>b=b'&Pabb Pa—>3Ja.b=fa&Pb

V=1 =1 | <]

Qa<——=Qa Qabb <—— Qabb’ Qfa ——Qb

et e I

Rab —>Vb.Rab Rab =>b=b' > Rab Ra =—>Va.b=fa> Pb

a,b————a a,b——a,b,t/ al—f>b
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10

Quantifiers as adjoints: an example

‘T and V' are left and right adjoint to
change-of-base along a projection A x B — A...
That this is true is far from obvious,

so let’s look at an example. If

A — eeo 000 and

B =, then

AX B = (Jeeee;

using the obvious positional notation with Os and 1s
to denote subsets of A x B and A,

and for the right P(a,b), Q(a), R(a,b), we have:

{a,b]| P(a,b)} - {al|3.P(a,b)} 199989 —> 110000

{a,b|Q(a)} <—— {allQ(a)}} 111990 <— 111000
<> <~

{a,b||R(a,b)} —= {a||Vb.R(a,b)} 11199 — 111100

AxB —— A AxB A

Later we will see that ‘3 4 7* 4V’ holds
even when the logic is just intuitionistic —
and we will use this to “define” 3 and V in hyperdoctrines...

Also, we will see in which sense

“hyperdoctrines are models of typed intuitionistic logic”,
and we will construct some hyperdoctrines in which the logic
is not classical.
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11

Preservations by change-of-base: overview
Start with f: A — B,
and {b[| P(b)[} and {b|[ Q(b)]-

There are two different categorical ways to build
an object that “deserves the name”

{all P(£(a))&Q(f(a))}-

We want these two ways to be isomorphic,

and there is a natural way to build

one of the directions of the iso —

so the technical condition

“change-of-base functors preserve the BiCCC structure”
becomes, for each of the connectives T, 1, &, V,>,

that this natural half-side of the iso

will have an inverse.

More precisely:

[f*Ts La F(P>Q)

o 2

Ta f*iB f*P>f*Q

B=(f ")
[*P&f*Q ——— [*(P&Q)

b= ]
[PV Qe —= [ (PVQ)

We will see the diagrams for these constructions in the next slides.
The natural half for ‘>’ in particular, is a big construction.

The Beck-Chevalley conditions are similar: they say that the two
natural constructions for two objects that “deserve the same name”
are isomorphic — the natural half-side of an iso has an inverse.

Frobenius conditions are more like distributivities.
The case where they are more natural will appear later,
in another hyperdoctrine, where the same structure will
interpret different operations. There it will be this:

b
b, (¢, d)\——= (b,¢),d
Frob
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Preservation of ‘true’ and ‘and’

P

T<——T P&é;( P&Q < P&%Q
hIIPT l
T

Q Q

a———>b al b

f*Tp<=—Tp f*P&f*Q=—= f*(P&Q) ~— P&Q

f
NHPT i L%& < C%

Ta fQ !

A——B A
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12



Preservation of ‘false’ and ‘or’

1 P P
)P S~ ]
l<——1 PvQ@PVQ:PEQ
T
Q/ Q
at——b at b
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Preservation of ‘implies’

(P> Q)&P ,Pﬁ (P2 Q)&P ——= (P2 Q)&P

V> : \
\\\;;\\fDQ \N Po@
e N e
PoQ P>Q

F(PoQES P == (P2 Q&P) < (P Q&P
! <~ |
f*Q>/ Q
BN ™

fr(PoQ) IP>Q
hHPD J/id
["P>f*Q P>Q

A ! B
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BCC for ‘forall’

Ve.P <—>VYe.P<—————Vec.P

ISC ]

\\ii\jaj ) Ve.P
hIIBccv \ Iid

Ve.P Ve.P

/

a,ct

N\

at

NP <> f*c*Y P < ¢*V,P

A T

&*VCP ) \ 1V.P
hMBccv \vti

Ve f*P
AxC - BxC
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BCC for ‘exists’

P P

j&a P — alp\

c. c.P ——— ¢

\ de. P \/ de.P
@IBCCH Iid
de.P de.P

a,ct b,c
al b
f*P | P
! X\\ . i\
c* f*3a.P \ f*c* 3, P <—— c*3.P
3o f*P \ 3.P
hMBCCH i/id

#*3.P '3.P
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BCC for equality

17

P P
c=c&P c=c&P <—— c=c&P
c=c &P \ c=c &P
hlﬁscca Iid
c=c &P c=c &P
a,ct b,c
_J
a,c,c't b,c,c
f*pP | P
c*f*Eq.P f"*c*Eq,P <— c*Eq P
Eq. f"*P \/ Eq.P
hHBCC: i/id
f*Eq.P 1 Eq.P
AxC - BxC
_J
AxCxC 7 BxCxC
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Frobenius for ‘exists’

P Je.P
P&Q ——> Fc.(P&Q) % (Fe.P)&Q

Vo ]

Q Q

b, ct b

|
c'Q 1Q
BxC c B
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19

Frobenius for equality

P c=c &P

I — — 1
P&Q ——> c=c'&(P&Q)) == (c=c'&P)&Q

$ . Frob= l

Q Q

b, ci b,c,c

=

!
P&c*Q —— Eq,(P&c*Q) ? (Eq.P)&Q
. rob— \L
C*Q \ Q

BxC = BxCxC
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Frobenius for exists-equal

Pa Ja.b=fa& Pa
1 - — 1
Pa&Qfa —> Ja.b=Ffa&(Pa&Qfa) ' —= (Ja.b=fa& Pa)&Qb
e
Qfa
at b
P Eq;P

¢ — \¢
e Q

A B
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Frobenius is equivalent to preservation of ‘implies’

PY) <Y p(Y)  angSf<—¢Sf  (3b.Pab) A Qa <= 3b.Pab
hTi/Frob hﬁl’Frob
Osf Ozt (f-a)np)Ef 35-(P0ﬁ/\Qa)
P(X)fif-a)/\()P(X) (fra)hp<=—0p Pab N Qa <—— Pab
Pv) = py) b —>a = Ra —— Qa > Ra
70 70 ) a2 Ra
hMPD hITPD
P( )(f_a)é()P(X) fo—f-a=f-9¢ Ra ——= Qa>Ra

(@APEf =) <——— (pEf = a= 1)

h\Lq\Frob I
(f- ) Np)Ef — )
1 (o= [ (a=1))

hMPD

(frarne—=fP)<=—=(p—f-a=f9)

(3b.Pab) A Qa + Ra <= 3b.Pabt Qa > Ra

2| }rrob Jj

3b.(Pab A Qa) + Ra
1 Pabt+ Qa > Ra

1P

PabAQat Ra<—— Pabt Qa> Ra
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BCC for ‘exists’ holds iff BCC for ‘forall’ holds

()Sa @)

Xt X foorZi(fo)se et
_J
hi?scc ()Hfl
, )
(Y2
; P O [ (¥Ey) Ony
, JA (z-Q)ILf
-0)
h¢TBCC
Y — sy o ymy oy ey <2y
a,b,c——a,b Pac ———= dc.Pac Rab <—= Rab
_J
hlﬁscc
de.Pac
Vb.Rab
thBCC
a,c——>a Pac —— Jc.Pac Vb.Rab <——Vb.Rab

(fYv—oz-0)<=((f ¥)Ex— )
{ h¢TBCC
(f - (WZy) — )
(¥ — (z - 9)ILf)
hi?Bcc

(¥ =y (¢IIf')) == (¥ By — ¢ILf')

Pact Rab de.Pac - Rab
hIﬁBcc
de.Pac - Rab
PactF Vb.Rab

:|Jsec

PactF Vb.Rab <— dc.Pac F Vb.Rab
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23

From “constructions” to “intuitionistic proofs”, and back
We have a notion of “categorical construction”

and a notion of “intuitionistic proof”;

neither of them are very clear now —

but I will start with some examples,

and show how every “categorical construction”

in a hyperdoctrine can be translated to an
“intuitionistic proof”, and how an

“intuitionistic proof” in a certain

typed intuitionistic logic can be translated

to a “categorical construction” in a hyperdoctrine...

Only after seeing these two translations in detail
we will start to think about adding new constants,
axioms, operations and rules to our

“typed intuitionistic logic”, and how to add new
constants, operations, equalities, etc, to our
notion of hyperdoctrine.

Note: in this beginning all our categorical constructions

will look as if they were happening in Sub(Set)-;Set —

because at this moment that is the only hyperdoctrine we know —
but the abstract diagrams that we will produce in the process

will later be seen to be appliable to every hyperdoctrine.

Similarly, all our intuitionistic proofs will look

as if they were just happening in a fragment of the full
language for sets and first-order predicates, but later

we will see that they will also apply to other “languages”
and “logics”, with “models” different from Sub(Set)-;Set...

But we need concrete examples to start with.
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The adjunction functors as sequent rules

P&Q «— P PEP 0
b l P&Q - P'&Q

l =
8 RF R

R—>Q>R G RrrQoR 97
(P,Q)=PVQ PFP QFQ
T T PVQFPVQ

R+ R %
(RER),(RFR)

SFS TFT .
(S,T) = S&T S&T + S'&T’
Pab=> 3b.Pab
b PabF P'ab
< . Pab - 3b.Pab
Qa <==CQa Qat Qa
> OakrOa
e Qur @
Rab => Vb.Rab Rab = R'ab

Vb.Rab - Vb.R'ab
a,b——>a

2008hyp January 26, 2009 02:55



25

The adjunction functors as sequent rules (2)

Pab — b=b/&Pab

, Pabt Plab <
Tﬁ—ﬁ b=b'&Pab + b=b'&Pab
Qabb <= Qabt/ Qabb’ F Q"abb! ¥ == b)
b bb - Q’abb o
=~ g
RabF R'ab

Rab —= b=b' > Rab

1/ N / =
b=b' > Rabt b=b' o> R'ab
a,b———a,b,V/

Pa = Ja.b=fa& Pab
T T Pat Pla

b _
bﬁ_i Ja.b=fa& Pb + Ja.b=fa&.Pb 3=
Qfa ——Qb Qb+ Q'b
T ] Ofat @'fa V=T
s
Ra =>Va.b=fa> Ra Ra b Ra v —

VYa.b=fa > Ra - Va.b=fa> R'a
aF———>b
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The adjunction

P&Q<—P

umv

R—@>R

(S,T) => S&T

Pab =>3b.Pab

b
<

i

Qa<—Qa
b

y

§
Rab =>Vb.Rab

a,b———a

maps as sequent rules

P&QF R PFQoR |
PFQoR W pgorr Cur

PR QFR , PVQFR 4 PVQFR

PvQrR VY PFR 1 TQFR
RES RET  RESST | RESET
TFs&r Y RFS I "REFT

Pabt Qa , 3b.Pab  Qa
3b.Pab - Qa Pab F Qa

Qa + Rab . Qa + Vb.Rab
Oa - Vb Rab * Qa - Rab

2008hyp January 26, 2009 02:55
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The adjunction maps as sequent rules (2)

Pab — b=b/&Pab

b
<

#
Qabb <—— Qabb’
b
s
Rab ——=> b=b' > Rab

a,b——a,b,t/

Pa = Ja.b=fa& Pab

b
<

i

Qfa=——=0qb
b

~

#
Ra =—>Va.b=fa> Ra

ar———>b

2008hyp January 26, 2009 02:55

Pab - Qabb b
b=t/ & Pab - Qabtl — &

Qabb F Rab g
Qabb’ - b=b' > Rab ~—

PatF Qfa

Sa.b=fa&PabF Qb 2 =

Qfat Ra .
QbFVab=fa>Ra ~——

b=b'&Pab F Qabbt’

Pab F Qabb

27

Qabb’ - b=b" > Rab

Qabb - Rab

=D

Ja.b=fa& Pab F Qb

Pat Qfa

Qb Va.b=fa > Ra

Qfat Ra

=2



The adjunction functors as ND proofs

P&Q <——P

| %

=\t

b
=
(S,T) = S&T

Pab —> 3b.Pab

b
ES |

#
Q_a — Qa

b
#

Rab = Vb.Rab

a,b———a

T &El
: P&Q
: —— &Ey
P’

P Q@

o
/ /\/
P'VQ

5
I
Pvg Pvg
VO

[Pab]!

P;ab

I.Pab Ib.Pab L
TP ab
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Q'

[b]"
Rgb

R'ab

Ra
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The adjunction functors as ND proofs (2)

Pab — b=b'&Pab

b
#

Qabb <—— Qabb’
b
s
Rab —=> b=b' > Rab

a,b——a,b,t/

Pa = Ja.b=fa&Pab

b
-
Q_]_‘a e C_)_b

b
F—

#
Ra =—>Va.b=fa > Ra

ab———b

b=b'& Pab

Pab LE
b=b'&Pab 5 :
b=b' ' Pab
b=b'&P’'ab
p=b]' b=b'>Rab
Rab >
Rlab 1
b=b' > Rab ~
[fa = b&Pa)!
Pa
[fa = b&Pa]' :
fa=1b L, Pla or
fa=0&P'a
Jda.fa = b&Pa Jda.fa = b&P'a 2B
Jda.fa = b&P'a ’
Va.fa =b> Ra
[fa=0b' fa=b>Ra
Ra
Ra )
fa=b>oRa

VYa.fa=b> Ra

2008hyp January 26, 2009 02:55
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The adjunction maps as ND proofs

P Q! P&Q
P&Q<——P
Q b PLQ &I P &Ey
[ may )
R 1) Q @oR B
R==Q>5R 0-r R -
(P,Q)=PVQ Pl Py VI
A . S PvQ "t PvQ ?
. !
s PVQ R R :
< .
; R VB R R
(R,R) <R
T, R R R R
S T S&T S&T
S,T) = S&T - — —
Pab =>3b.Pab [Pab]! Pab
o : bPab !
< 3b.Pab  Qa . :
Qa<—CQa Qa Qa
b
- [Qal! Qa
Rab = Vb.Rab Qa Rab > b ¥b.Rab g
ab u Vb.Rab Rab
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The adjunction maps as ND proofs (2)
Pab —=> b=b'&Pab
b
-+
Qabb <— Qabd’
b
-
Rab —> b=b' o Rab

a,b————a, bt/

b=&cPab [b=b']' Pab
Pab 2 b=b'& Pab
b=b'&Pab : :
ey B Qabb . b=p ! Qabl/ —
Qabb’ o Qabb T
[b=b]' Qabt' (Qabb']!
Qabb : :
: ; [b=t]' b=t > Rab
Rab b=b ' Qabb Rab -
=t/ > Rab = 171 Rab bi=b1
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The adjunction maps as ND proofs (3)

Pa = Ja.b=fa& Pab

b
#

Qfa < Cgb
b
e

Ra =—>Va.b=fa> Ra

aF————>b

[b=fa]! Pa
[b=fa& Pa)* b=fa&Pa
Pa Ja.b=fa& Pa
[b=fa&Pa)" : :
b=fa Qfa [b=Ffa]" Qb
Ja.b=fa& Pa Qb fa= fa Qfa
Qb ' Qfa
Q!
[fa=0b]" Qb :
 Qfa [Qfa']? Va.fa=b> Ra
: Va.fa = fa' > Ra
Ra Qfa fa= fa>Ra
faszRal fa= fa fa= fa>Ra 2
VYa.fa =b> Ra Ra
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The Frobenius maps as ND proofs

The preservations of T, 1, &, V,> are all
trivially true intuitionistically, as they are all
of the form a F «a...

Same for Beck-Chevalley.

The f arrows whose inverses are the Frobenius maps
can be constructed from operations whose translations
to Intuitionistic Logic we have already seen.

;
3 (P& Q) ~— (3~ P)&Q

h
3b.(Pab&Qa) ————> (3b.Pab)&Qa
Frob3

Eqs(P&6*Q) (Eqs P)&Q

Frob=

b
b=b'&(Pabb&Qab) =———=; (b=b/& Pabb)&Qab
Frob=

=7 (P&f*Q) (F=sP)&Q

Frob3=

S0.b=fae(Pa&Qfa) = (Ja.b=fa& Pa)&Qb
F

ro =

We need to show that the Frobenius maps
“hold intuitionistically”.

Here is a ND proof for the first case:
(the other cases are similar - and the trees are big)

(3b.Pab)&Qa
, &
[Pab] Qa
(3b.Pab)&Qa Pab&Qa -
3b.Pab Y 3b.(Pab&Qa) e
3b.(Pab&Qa) '

Es

&I
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Frobenius for equality (2)
(Now we will start to see consequences of the structure)

If we have EqT and Frobenius, then we have EqP:

1x1 1x3(X, )

_—

Ix > (¢ AN1x)ZQ Alx == 7x - @ A LxS(X, f)

f
I ey

|

\ i ITx - X

X XxY

T b=b'&T

[ — |

T&P ——= b=b'&(T&P) —= (b=b'&T)&
$ /K I
P \ P

b=b'&P

!

P=——=0b=b&P

a,bi a,b, b a,b

From now on we will usually write “b=>b'&T” as just “b=0b"".
Frobenius for equality implies that the four obvious definitions
for b=b'& P are isomorphic.
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Dependent equality from simple equality

T~ mT<~——T

INO L=

0*m33EqT m36*EqQT <—— §*EqT \

Eds: Taxs EqT

hHBCCH \Lid

m33Eqs T B 1EqT

AxB — B
_
5

6/

AxBxB BxB

a,b, b’ b, b
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Transitivity of equality

0™*n3,Eqs T
id Eqs 0 m3,Eqs T
\
8 m3,Eqs T T\
myEqs T <— EqsT
(AxB)xB AxB
5
M \
((AxB)xB)xB —— (AxB)xB
b:b/\
id b'=b"&b=b'
N
b=b' T

(a,b),b' a,b

b=
b”::/N «

((a,b),b),b" ——— (a,b), V"
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Hyperdoctrines: substitution, quantifiers, reflexivity

The substitution rule:
P O
a,c

P —

(o)

acPrQ) <~ Jperra
Q O Q
(b, c> P — (b7 c>

a,c—— b, ¢

AN N
a———>b
atkb
The ‘(VI)” and ‘(VE)’ rules:
P O P P O
| a— | a—
(ore) =) ()=
a,b;PHQ — ia;PFVb.Q a;QFR$ <

O

P O P
| am—
a,b) — (a)

$ < ia;QFVb‘R
Q

)= (%)

The ‘(E)’ and ‘(3I)’ rules:

P cod  (3b.P P d P cold  /3b.P
— [ — —
()= (3 ()= ()= (")
a,b;PFQl — la;Elb.PFQ a;PFEIb.Pl < $ < lid
Q\,. 2. (Q 3.P\, O (F.P\ O_ (3P
(b, c) <= \a,b a J<=—\ab)—\ a
akb

al

a,b——a

The “reflexivity” rule for equality (on variables):
T cold
a,b

b=b
= \a,b ¥/
a,b;T)—(b:b)I <~ Iid
D b=b'
(a, b, b’)

b=b
f—
(a8) =
a, b= o b,V
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Hyperdoctrines: symmetry, transitivity
The “symmetry” rule for equality (on variables):

T cold b=t
_ s
() === (2v)
reﬂI = Ia,b,b/;(b:b/)F(b/:b)
b=b o b'=b
>
(o) == (ar)
O
T cold b=b
-
(wrr) === (ars)

b':=b
ab— = by

b':=b
a b — = v

The “transitivity” rule for equality (on variables):

b=b'\ o0 (b'=b"&b=b
-
(a,b, b’) = ( a,b,b',b" )
idl — Ia,b,b’,b”;(b’:b”)&(b:lﬂ))—(b:b”)

b=t/ O b=b"
(wr) == (w )

O

T cold b=b"
P
(a’ b) f— (a/, b/, b/[)

b =b
a, b, b —2= s g b Y b

b :=b
a,b—C= Yy
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Weak and strong exists-elim

There are two versions of (3E), (3E~) and (IET).

They are “equivalent enough”, and (3E ™) is much simpler categorically.
The rules, in natural deduction and sequent calculus forms:

[P(a,b)] Qla)

Sb.P(a,b) Rla) a,b: P(a,b), Q(a) - R(a)
R(a) 1 (3E7) a;3b.P(a,b),Q(a) - R(a) (3E7)
[P(a,b)]!
3b.P(a,b) Q(:a) [ a,b; P(a,b) - Q(a) _
Q(a) LEET) a;3b.P(a,b) - Q(a) (3E7)

(3E7) is a particular case of (JET) — take Q(a) := T in (3ET).
In the presence of (o) the rule (3E~) implies (IE™T):

[P(a, b)) [Qa)]!

I.Pa,b)  Q(a) > R(a) ;; gbf)ﬂ
Q@ Q=R

(3E7), categorically:
P(a,b) = 3b.P(a,b)
e}
Q(a) ——=Q(a
a,b———a

(3ET), categorically:
P(a,b)&Q(a) <= P(a,b) ——— 3b.P(a,b) =—> (Fb.P(a,b))&Q(a)

RIS AN S

a) =—=Q(a a) <= Q(a) o> R(a) <—= R(a)

a4, ——a,b—>a——a

Note that O[<Q(a)anR(a)

)

with a hidden iso between them.

)] has two constructions,
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Rules in ND and sequent calculus
The rules, in natural deduction form ((VE) is wrong):

}; P P C%R (&By) .@;R (&E2)
fm;: (&I) 5 s
Po[Q P P
QiR L) 0 §;R< E)
P (:a) o an)
v%(f@ ) f(“é(a\f‘}ﬁﬁ?b) (vE)
Q) (P! Q)

The rules, in sequent calculus form ((VE) is wrong):

ey 0| agar ey P
o aren | imreda@rRE P
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Rules, categorically

41

The rules, categorically ((&F) needs explanations, (VE) is wrong):

Q<" 4Q&R—">R

LT

Q<—"1Q&R+—=R P&Q < P&Q&R+—> P&R
P
P&Q<=P /I\
I — I Q<Y (QoR&QEQSR
RﬁQDR I < Iid
R——Q@Q>R
Q(a) == Q(a) Q(a) <= Q(a) ==Q(a)

R(a,b) = Vb.R(a,b)

a,b——a

) <—= P(a,b) =—> 3b.P(a,b)

I — | =]
3b.P(a,b) <= 3b.P(a,b) <= 3b.P(a,b)
b:=f(a)
al

a,bt a

(see next page)
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