If L and R are (proto-)functors going in opposite directions between two (proto-)categories, say,

$$\mathbf{B} \stackrel{L}{\overset{L}{\rightleftharpoons}} \mathbf{A}$$

then a proto-adjunction, $L \dashv R$, is an 8-uple,

$$(\mathbf{A}, \mathbf{B}, L, R, \flat, \sharp, \eta, \epsilon)$$

that we draw as:

$$\begin{array}{cccc}
LRB & LA \longleftrightarrow A & A \\
\downarrow & \downarrow & \downarrow & \downarrow \\
B & \downarrow & \downarrow & \downarrow \\$$

There is some redundancy in this definition, as we may reconstruct some of the entities \flat , \sharp , η , ϵ in terms of the other ones:

A protomonad for a proto-endofunctor $T: \mathbf{A} \to \mathbf{A}$ is a 4-uple:

$$(\mathbf{A}, T, \eta, \mu)$$

that we draw as:

$$A \xrightarrow{\eta_A} TA \xleftarrow{\mu_A} TTA$$

A proto-comonad for a proto-endofunctor $S: \mathbf{B} \to \mathbf{B}$ is a 4-uple:

$$(\mathbf{B}, S, \varepsilon, \delta)$$

2009dnc-monads November 5, 2009 11:14

that we draw as:

$$B \stackrel{\varepsilon_B}{\longleftrightarrow} SB \stackrel{\delta_B}{\longrightarrow} SSB$$

Each proto-adjunction induces both a proto-monad and a proto-comonad. We draw all these together as:

We define $\mu_A := R(\operatorname{id}_{RLA}^{\flat})$ and $\delta_B := L(\operatorname{id}_{LRB}^{\sharp})$:

$$\frac{\operatorname{id}_{RLA}:RLA\to RLA}{\operatorname{id}_{RLA}^{\flat}:LRLA\to LA} \qquad \qquad \underbrace{\operatorname{id}_{LRB}:LRB\to LRB}_{\operatorname{id}_{LRB}^{\sharp}:RB\to RLRB}$$

$$\mu_{A}:=R(\operatorname{id}_{RLA}^{\flat}):RLRLA\to RLA \qquad \delta_{B}:=L(\operatorname{id}_{LRB}^{\sharp}):LRB\to LRLRB$$

We have seen how a proto-adjunction induces a proto-monad; now we will see how a proto-monad induces two proto-adjunctions.

The Kleisli proto-adjunction

The Kleisli proto-category of a proto-monad $(\mathbf{A}, T, \eta, \mu)$ is the proto-category:

$$\mathbf{A}_T := ((\mathbf{A}_T)_0, \operatorname{Hom}_{\mathbf{A}_T}, \operatorname{id}_{\mathbf{A}_T}, \circ_{\mathbf{A}_T})$$

where $(\mathbf{A}_T)_0$ is equal to \mathbf{A}_0 , ut we write the objects of $(\mathbf{A}_T)_0$ in a funny way: an object $A \in \mathbf{A}$ becomes

$$[A - \succ TA]$$

when we regard it as an object of $(\mathbf{A}_T)_0$.

A morphism in $\operatorname{Hom}_{\mathbf{A}_T}([A - \succ TA], [C - \succ TC])$ is just a map $f: A \to TC$ in $\operatorname{Hom}_{\mathbf{A}}(A, TC)$. We write it as $[f] : \operatorname{Hom}_{\mathbf{A}_T}([A \to TA], [C \to TC])$ to stress that its (formal) type is different from f.

The identity operation, $id_{\mathbf{A}_T}$, is the η (the "unit") of the monad in disguise:

$$id_{\mathbf{A}_T}([A \rightarrow TA]) := [\eta_{\mathbf{A}}]$$

Note that:

The composition, $\circ_{\mathbf{A}_T}$, needs a trick: if $f:A\to TC$ and $g:C\to TE$ then $[f];[g]:=[f;Tg;\mu_E]$. In diagrams:

The dashed arrow in, say, $[A \rightarrow TA]$, is to suggest three things: that morphisms in \mathbf{A}_T follow the direction of the ' \rightarrow ',

that a morphism $A \to TA$ is not part of the definition of an object $[A \to TA]$, that the ' $- \to$ ' is the ghost of the unit of the monad — the unit would go from A to TA, but it is not used in the definitions; nevertheless, its memory remains.

We can draw the Kleisli (proto-)adjunction as:

The Eilenberg-Moore proto-adjunction

The Eilenberg-Moore proto-category for a proto-monad $(\mathbf{A}, T, \eta, \mu)$ is:

$$\mathbf{A}^T := ((\mathbf{A}^T)_0, \operatorname{Hom}_{\mathbf{A}^T}, \operatorname{id}_{\mathbf{A}^T}, \circ_{\mathbf{A}^T})$$

where an object of $(\mathbf{A}^T)_0$ is a pair (A, α) (a "proto-algebra"), that we write as:

$$[A \stackrel{\alpha}{\longleftarrow} TA]$$

We use a non-dashed arrow, ' \leftarrow ', to stress that the map α : $\operatorname{Hom}_{\mathbf{A}}(TA,A)$ is part of the definition of the object.

A (proto-)morphism $f: [A \stackrel{\alpha}{\longleftarrow} TA] \to [C \stackrel{\gamma}{\longleftarrow} TC]$ is just a morphism $f: \operatorname{Hom}_{\mathbf{A}}(A,C)$. The identity $\operatorname{id}_{\mathbf{A}^T}$ and the composition $\circ_{\mathbf{A}^T}$ are defined in the obvious way (inherited from \mathbf{A}).

The Eilenberg-Moore adjunction can be drawn as:

2009dnc-monads November 5, 2009 11:14

where [two triangles showing the transpositions]: