
Internal Diagrams in Category Theory

Eduardo Ochs (LLaRC, PURO, UFF)
eduardoochs@gmail.com

http://angg.twu.net/

2010nov01

Abstract

We can regard operations that discard information, like specializing to

a particular case or dropping the intermediate steps of a proof, as projec-

tions, and operations that reconstruct information as liftings. By working

with several projections in parallel we can make sense of statements like

“Set is the archetypal Cartesian Closed Category”, which means that

proofs about CCCs can be done in the “archetypal language” and then

lifted to proofs in the general setting. The method works even when our

archetypal language is diagrammatical, has potential ambiguities, is not

completely formalized, and does not have semantics for all terms. We

illustrate the method with an example from hyperdoctrines and another

from synthetic differential geometry.

(Submitted to the Special Issue on Categorical Logic of Logica Universalis. The text may

be considered in final form, modulo a missing “thanks” section and corrections and suggestions

from the referees, but there are still many formatting adjustments to be made... This paper

is not in the birkjour format yet!)

1 Mental Space and Diagrams

My memory is limited, and not very dependable: I often have to rededuce results

to be sure of them, and I have to make them fit in as little “mental space” as

possible...

Different people have different measures for “mental space”; someone with a

good algebraic memory may feel that an expression like Frob♮ : Σf (P ∧f∗Q)
∼=−→

ΣfP ∧Q is easy to remember, while I always think diagramatically, and so what
I do is that I remember this diagram,

1

http://angg.twu.net/

2

and I reconstruct the formula from it.

I cannot yet define precisely what it is to “think diagramatically”, but for
the purposes of this paper a loose definition — or rather, a set of concepts
and techniques for diagrammatical thinking, plus non-trivial consequences of
“thinking” in that way — shall do. I will resort to a narrative device: I will

speak as from a semi-fictional “I” who thinks as diagramatically as possible,

and who always uses diagrams as a help for his bad algebraic thinking.

2 Projections and Liftings

Take the concept of “projection”, from the realm of covering spaces or from
Linear Algebra. A projection map discards information — coordinates, maybe
— and may collapse objects that were originally distinct.

I try to organize my diagrams to make the projection arrows — most of
them, at least — go down. Figure [2-100-99] is an example.

Specialization acts like a projection. Look at the top arrow in Fig. 1: ex-
cept for the choice of a particular value for n, we have only lost information.
Discarding intermediate steps, as in the bottom arrow, is a kind of erasing, and
erasings are evidently projections.

2n+1 − 2n = 21+n − 2n

= 2 · 2n − 1 · 2n
= (2− 1) · 2n
= 2n

2100 − 299 = 21+99 − 299

= 2 · 299 − 1 · 299
= (2− 1) · 299
= 299

��

2100 − 299 = 21+99 − 299

= 2 · 299 − 1 · 299
= (2− 1) · 299
= 299

2100 − 299 = 299
��

Figure [2-100-99]

The opposite of to project is to lift; projecting is easy, lifting is hard. A
projection map, p : E → B, may have any number of preimages for a point b
in the base space — one, many, none —, and, to make things worse, we will
often be interested in very specific cases where we are somehow able to recognize
whether a given lifting is “good” or not — for example, we may be looking for
the “right” generalization for 2100 − 299 = 299 —, but where we are unable to
define exactly what a “good lifting” is.

2010diags December 4, 2010 18:34

3

3 Downcased Types

Suppose that we have a point p ∈ A × B and a function f : B → C. There
is a single “obvious” way to build a point of C starting from this data. It is
“obvious” because we have a search method that finds it; it is related to proof
search (via the Curry-Howard isomorphism). Here’s how it works, briefly and
informally.

A point p ∈ A × B is a pair made of an ‘a’ and a ‘b’. If we allow “long
names” for variables we can replace the ‘p’ by another name, that reflects its
type more closely; so let’s rename ‘p’ to ‘a, b’. Similarly, an f : B → C is an
operation that takes each ‘b’ to a ‘c’, so let’s rename ‘f ’ to ‘b 7→ c’. Now, with
this new notation, we are looking for an operation that takes an ‘a, b’ and a
‘b 7→ c’ and produces a term that “deserves the name” ‘c’. We start at the tree
in the lower right rectangle in Figure [Two], and we want to arrive at the tree
in the lower left; both trees have the same shape, and by relating them we will
see that the term corresponding to c is f(π′p). Note that in this new language
— “Downcased Types” — we have no syntactical distinction between variables
and non-atomic terms.

a, b ≡ p : A×B

b ≡ π′p : B
π′

b 7→ c ≡ f : B → C

c ≡ f(π′p) : C
app

p : A×B

π′p : B
π′

f : B → C

f(π′p) : C
app

��?
??

??
??

a, b ≡ p : A×B

b ≡ π′p : B
π′

b 7→ c ≡ f : B → C

c ≡ f(π′p) : C
app

a, b

b
π′

b 7→ c

c
app

~~||
||

||
|

p : A×B

π′p : B
π′

f : B → C

f(π′p) : C
app

p

π′p
π′

f

f(π′p)
app

����
��

��

p : A×B

π′p : B
π′

f : B → C

f(π′p) : C
app

A×B

B B → C

C

��5
55

55
5

a, b

b
π′

b 7→ c

c
app

a, b

b b 7→ c

c

��
��
�

A×B

B B → C

C

a, b

b b 7→ c

c

//oo_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

p

π′p
π′

f

f(π′p)
app

p f

f(π′p)

��

A×B

B B → C

C

A×B B → C

C

��

a, b

b b 7→ c

c

a, b b 7→ c

c

��

A×B B → C

C

a, b b 7→ c

c

//oo_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure [Two]

All the solid arrows in Figure [Two] are erasings. The dashed arrows are
“uppercasings” when we go rightwards, “downcasings” when we go to the left;

2010diags December 4, 2010 18:34

4

note that ‘×’ is downcased to ‘,’, and ‘→’ is downcased to ‘ 7→’. If we start at
the lower left and we move right through the dashed arrow, we get the types
of the (three) objects involved; what we still need to do from there is a kind of
“term inference”...

“Type inference” is very well-known, and polymorphic languages like Haskell
and ML implement algorithms for it; “term inference”, on the other hand, is
rarely mentioned in the literature, but techniques like parametricity ([Wad89],
[BJP10]) provide useful meta-theorems about properties that all possible in-
ferrable terms must obey. It would be lovely if these techniques could do term
inference for us, algorithmically — but they can’t, so when we need to infer
terms we usually do the work by hand.

As term inference is hard, let’s turn our attention to something easier, and
looser. “Inference” carries the connotation of something that can be done algo-
rithmically, without any previous knowledge of the result. We will focus on the
process of “reconstructing” the desired term, c ≡ f(π′p), from the downcased
tree in the lower left of Figure [Two]. A “reconstruction” may need hints to
be completed, and may depend on making the right choices at some points,
motivated by unformalizable bits of common sense, or by intuition, hindsight,
or by vague rememberances, by a sense of good style, or whatever else. A “re-
construction” is the result of an incomplete algorithm (or a “method”, rather
than an “algorithm”); when we perfect a method for reconstruction, and finish
filling up all its gaps, it becomes an “inference algorithm”.

For our purposes, “reconstruction” will be enough — and real “inference”
will be close to impossible.

4 The Dictionary

The downcased notation has to be used with care, as it doesn’t come with any
built-in devices to protect us from ambiguities. For example, we could have
tried to find a term “deserving the name” ‘a, a 7→ a, a’ — and there are four
different ones!...

One way to avoid this problem is to consider that the downcased “names”
are just that, names, and that we have a dictionary that associates to each name
its meaning.

In the case of λ-calculus, a dictionary relating each downcased name to
its meaning can be extracted from a derivation tree (if all the rule names are
present), and the derivation tree can be reconstructed from its associated dic-
tionary. For example,

a, b

b
π′

b 7→ c

c
app

〈〈b〉〉 := π′〈〈a, b〉〉
〈〈c〉〉 := 〈〈b 7→ c〉〉〈〈b〉〉

//
a, b

b
π′

b 7→ c

c
app

〈〈b〉〉 := π′〈〈a, b〉〉
〈〈c〉〉 := 〈〈b 7→ c〉〉〈〈b〉〉oo

2010diags December 4, 2010 18:34

5

and if we add to that dictionary the entries

〈〈a, b〉〉 := p
〈〈b 7→ c〉〉 := f

then we can reconstruct the tree

p

π′p
π′

f

f(π′p)
app

from that. Note that we use double angle brackets, 〈〈·〉〉, to separate names from
one another and to distinguish them from standard notation, and that we use
‘≡’ to indicate change of notation — usually between downcased and standard.

5 Internal Diagrams

Several of the initial ideas for the system of downcased types came from attempts
to formalize something that I will call “physicist’s notation”, and that should
be familiar to most readers; I have never seen any detailed formalizations of it,
though.

Suppose that we have a function f : R → R, and we draw the graph of
y = f(x). Then, given points x0, x1, x2, x

′ on the “x-axis” we have default
meanings for the names y0, y1, y2, y

′: namely, y0 := f(x0), y
′ := f(x′), and so

on. It makes sense to write X for the domain of f and Y for its codomain, and
if we draw the “internal diagram” (as in [LS97], p.14) of the map f , we get this:

external
view

internal
view

standard
notation

downcased
notation

X Y
f //

x f(x)
� //

x0 y0
� //

x1 y1
� //

x′ y′� //
...

...

xn yn
� //

�

�

�

�

�

�

�

�

x2 y2
� //

xn yn
� //

x y
� //

Note that for each name like x2 of a point in the x-axis (the “space of ‘x’s”,
X) we have chosen a similar name for a point in the y-axis (the “space of ‘y’s”,
Y). We will call the implicit operation on names the syntactical action of the
function f ≡ x 7→ y; in the case above, the syntactical action replaced the ‘x’
of each original name into a ‘y’, and kept all the “decorations” unchanged. The

2010diags December 4, 2010 18:34

6

syntactical action does not need to be defined for all possible names of points
in X — in fact, we restrict ourself to “good” names of points in X exactly to
make the syntactical action easier to describe.

Now let’s take a function less abstract:
√· : N → R. Its action is implicit

in its name (“
√ · ”), and if we examine its internal diagram,

external
view

internal
view

standard
notation

downcased
notation

N R

√ · //

n
√
n

� //

0 0
� //

1 1� //

2
√
2� //

...
...

n
√
n

� //

�

�

�

�

�

�

�

�

2
√
2� //

n
√
n

� //

n r
� //

we may conclude that it should be possible to use ‘n 7→ √
n’ as its name; or

even ‘2 7→
√
2’ — “the function that takes 2 to

√
2, for every value of ‘2’ ”...

As the reader may have guessed, there is no clear separation between what
are “good names” and “bad names” for an object; instead we have a murky line.
We have just seen in the first example that ‘x0’, ‘x

′’, etc, can all be downcasings
for ‘X’, and maybe the ‘1’ in second example, if taken as a name, should be
uppercaseable both as N and as R... The trick is all in our use of the dictionary:
we can define the meaning of ‘n 7→ √

n’ to be
√· : N → R, and, if we feel that

#!
$ is a good name for the square root, we can define it to stand for the square

root too...

6 Parallel Notations

We are using two notations — downcased and standard — in parallel; it is
possible to use more. One way to visualize what is going on is to think in
terms of computer interfaces. Imagine a user inspecting huge data structures
by displaying them on a computer screen in several forms — he can toggle
switches that control what gets shown and what is omitted.

The downcased notation of the previous sections is my compromise between
my intuition and a formalization. Suppose that someone has created a third
notation, that he claims that is much closer to his intuitions. He can set the
controls to display only his favorite notation, as in the left side of the diagram
below; or he can display all together at the same time — as at the top.

2010diags December 4, 2010 18:34

7

all that
together

ineffable
purely
intuitive
thought

����
��

�

all that
together

a, b ≡ p : A×B

b ≡ π′p : B
π′

b 7→ c ≡ f : B → C

c ≡ f(π′p) : C
app

''OOOOOO

a, b ≡ p : A×B

b ≡ π′p : B
π′

b 7→ c ≡ f : B → C

c ≡ f(π′p) : C
app

a, b

b b 7→ c

c

}}||
||

|

a, b ≡ p : A×B

b ≡ π′p : B
π′

b 7→ c ≡ f : B → C

c ≡ f(π′p) : C
app

p : A×B

π′p : B
π′

f : B → C

f(π′p) : C
app

��4
44

4

Figure [screens]

Working with three parallel notations is similar to working with two.

At this point our two notations, downcased and standard, generate trees with
exactly the same shapes; in the next section we will begin to compare diagrams
done in different notations, but the same shapes; and starting on section 12
the parallelism will be looser — there will be correspondences between trees
and dictionaries, on one side, and “strictly 2-dimensional” categorical diagrams,
on another. In all cases it is convenient to work in a “projected view”, yet
pretend that we are in the situation with total information — that the rest of
the information “is there”, but hidden.

7 Functors

Fix a set A. It induces a functor (A×), that takes each set B to A × B and
each function f : B → C to a function (A×)f : A× B → A× C. Let’s use the
subscripts ‘0’ and ‘1’ to distinguish the two actions of a functor: (A×)0 is its
action on objects (sets, in this case), (A×)1 is its action on morphisms (i.e., on
functions).

It is quite common in the literature of Category Theory to see things like:
“let (A×) : Set → Set the functor that takes each set B to A×B”. The action
on morphisms is not described — it is “obvious”, and it is left to the reader to
discover. The reader should apply a kind of search algorithm to find it. Which
algorithm is this?

Let’s downcase this problem. The action on objects takes each “space of
‘b’s” to a “space of ‘a, b’s”; its syntactical action is to prepend an ‘a,’. The
action on morphisms takes each b 7→ c to an a, b 7→ a, c — i.e., the syntactical
action on morphisms consists of applying the syntactical action on objects to
both the domain and the codomain. This is a general pattern: in all functors
the two syntactical actions will be related in this way.

2010diags December 4, 2010 18:34

8

Set Set
(A×) //

B A×B
� //

external
view

internal
view

B A×B
�(A×)0 //

C A×C
� //

B

C

f

��

�(A×)1//

A×B

A×C

(A×)f

��

b a, b+3

c a, c+3

b

c

_

��

a, b

a, c

_

��

� //

standard
notation

downcased
notation

The diagram is very similar to the ones in the previous section, but there
the blobs were sets and they had points; now the blobs — which we are no
longer drawing — are categories, that have objects, and between these objects
we may have morphisms. Also, the downcasing is changing the notation more
than before, and we are downcasing the ‘ 7→’s that were functor actions as ‘⇒’...
the ‘⇒’ is to remind us that: 1) something non-obvious is going on — points of
B are not being taken to points of A×B, instead the whole set B was fed into
(A×)0, and we got back A×B —, and 2) that ‘b ⇒ a, b’ is two actions.

So, we know just the “name” of the action on morphisms of this functor.
How do we reconstruct its “meaning”? The answer is obtained by liftings:

b 7→ c

a, b 7→ a, c
(A×)

[a, b]1

a

[a, b]1

b b 7→ c

c

a, c

a, b 7→ a, c
1

OO�
�
�

[a, b]1

a

[a, b]1

b b 7→ c

c

a, c

a, b 7→ a, c
1

[p]1

πp

[p]1

π′p f

f(π′p)

〈πp, f(π′p)〉
λp:(A×B).〈πp, f(π′p)〉 1

//___

We find that (A×)f := λp:A×B.〈πp, f(π′p)〉.

8 Natural Transformations

Now fix two sets, A and A′, and a map α : A → A′. We have natural construc-
tions for functors (A×) and (A′×), and, besides that, a natural transformation
(“NT”, from now on), (α×), going from (A×) to (A′×). An NT has a single

action, that takes objects to morphisms.

2010diags December 4, 2010 18:34

9

We will need a convention. if X and Y are objects of a category C, then

both f : X → Y and X
f→ Y will denote a morphism, but X → Y denotes the

full hom-set HomC(X,Y). With that convention, if F,G : A → B are functors
and T : F

.→ G is a NT, we can represent the internal view of T as:

A 7→ (FA
TA→ GA).

Let’s take the convention up one level: A
.→ (FA

TA→ GA) will denote a
specific NT, but A

.→ (FA → GA) will mean the class of all NTs from F to G;

and we downcase ‘
.→’ as ‘

•→’. Diagrammatically:

A× //
Set Set

A′×
//

α×��

B α×B
� //

B

A×B

4
A×

::ttttttt
B

A′×B

A′× $$JJJ
JJJ

JB
. //B

α×
//

A×B

A′×B

α×B

��

b

a, b6>ttttttt

ttttttt
b

a′, b
 (JJJ

JJJ
J

JJJ
JJJ

Jb
• //

a, b

a′, b

_

��

external
view

internal
view

standard
notation

downcased
notation

We know the “syntactical action” of (α×): it is B 7→ (A×B
α×B→ A′×B) in

standard notation, b
•→ (a, b 7→ a′, b) after downcasing. To obtain a “meaning”

for that we can apply the same procedure as in the previous section; we discover
that α×B := λp : A×B.〈f(πp), π′p〉.

Now let’s look at the notations for the general case. Let F,G : A → B be
functors, and T : F

.→ G be an NT between them. Everything is similar, but we
need a way to downcase the objects FA and GA... a good choice is as ‘aF ’ and
‘aG’ — because the idea of “an aF ” suggests nothing at all, and so it reminds
us that the functors F and G may be abstract.

2010diags December 4, 2010 18:34

10

F //
A B

G
//

T��

A TA
� //

A

FA

4
F

::tttttttt
A

GA

G $$JJJJJJJA
. //A
T

//

FA

GA

TA

��

a

aF6>ttttttt

ttttttt
a

aG
 (JJJJJJJ

JJJJJJJa
• //

aF

aG

_

��

external
view

internal
view

standard
notation

downcased
notation

We often have to deal with categories whose objects don’t have any reason-
able notion of “elements”. If our B is a category like that, then aF 7→ aG will be
a name for a morphism, but the names ‘aF ’ and ‘aG’ “will not have semantics”
— our dictionary will not attribute any meanings to them. See [Krö07], espe-
cially its sections 3.3.4.4 and 5.3.2.1, for a discussion; our downcased notation
is, in a sense, “a language for diagram chasing”.

9 Adjunctions

Fix an object B of Set, and let’s write B→C for CB . Then we have a functor
(B→) : Set → Set, whose syntactical action is C 7→ (B→C), in standard
notation, and c ⇒ b 7→ c after downcasing. This functor is right adjoint to
(×B) : Set → Set, and we will represent the adjunction diagrammatically as:

Set Set
oo (×B)

Set Set
(B→)

//

A×B Aoo (×B) �

C B→C
�
(B→)

//

A×B

C

uncur g

��

A×B

C

f

��

oouncur��
cur

//

A

B→C

g

��

A

B→C

cur f

��

a, b aks

c b 7→ c+3

a, b

c

_

��

a

b 7→ c

_

��

oo //

external
view

internal
view

standard
notation

downcased
notation

The two transpositions, cur and uncur, are natural transformations with

2010diags December 4, 2010 18:34

11

actions:

(Aop, C) 7→ ((A×B
f→ C) 7→ (A

cur f→ (B→C)))

(Aop, C) 7→ ((A
g→ (B→C)) 7→ (A×B

uncur g→ C))

where Aop is an object of Setop, and (Aop, C) is an object of Setop × Set.

The notation in the general case is similar. An adjunction L ⊣ R is repre-
sented diagrammatically as:

B A
oo L

B A
R

//

LA Aoo L �

B RB
�

R
//

LA

B

g♭

��

LA

B

f

��

oo ♭ �
�
♯
//

A

RB

g

��

A

RB

f♯

��

aL aks

b bR+3

aL

b

_

��

a

bR

_

��

oo //

external
view

internal
view

standard
notation

downcased
notation

We will usually draw L as going left, R as going right, and call the transpo-
sitions ‘♭’ and ‘♯’.

Just as a functor is two actions plus two properties — namely, that the action
on morphisms respects identities and composition —, a natural isomorphism
can be thought as two NTs going in opposite directions, plus the assurance that
their composites are identities; the downcased squares for the (×B) ⊣ (B→)
and L ⊣ R adjunctions in the diagrams above can be considered as being (two-
dimensional) downcased names themselves, having the same meaning as their
“linearized” versions,

(aop; c)
•→ ((a, b 7→ c) ↔ (a 7→ (b 7→ c)))

(aop; b)
•→ ((aL 7→ c) ↔ (a 7→ bR))

and those meanings can either be the 6-uples

(Set,Set, (×B), (B→), uncur, cur)
(A,B, L,R, ♭, ♯)

or longer tuples including, say, the properties and the unit and the counit of
the adjunction. The possibility of changing some definitions while keeping the
notations the same will be very important in [Och11], where that will be used
to “project out” from the definitions all components which involve equalities of
morphisms, keeping only the constructions.

2010diags December 4, 2010 18:34

12

10 Transmission

A good way to understand how reconstruction works is to think on a simpler,
more extreme case. When I reconstruct something that I have half-forgotten,
I do have vague memories about it... how do they act? On the other hand,
if I am reconstructing something that I have received from someone else in an
incomplete, but reconstructible, form, then the vague memories are out of the
picture.

Consider the following diagram, which describes, in a simplistic way, how
a theorem T , discovered by an author A and published in a paper P , is read
and understood by a reader R. In the diagram the time flows to the left, and
knowledge flows (roughly) downwards.

A0 A2
//

T1 T2
//

T3

P
T ′
0 T ′

1
//

R0 R1
//

The theorem was discovered in the form T1, but in order to make it trans-
missible the author changed it a bit, and it became T2, then T3 in written form,
which was what got published. The author was also slightly transformed in the
process, and at the time of the publication he had become A2.

That particular theorem was difficult to state, so the reader R0 started by
understanding just parts of its statement; let’s call that preliminary object un-
derstood by our reader a “statement with holes”. Then, through weeks of study,
more and more of the theorem’s statement, and of the proof of the theorem (let’s
use the term “theorem” to refer to both the statement and the proof), became
clear to R, up to the point where the object in R’s mind has become T ′

1, which
no longer has any holes; all gaps have been filled, the statement is now clearly
a consequence of its proof, and our reader R, who at this point has become a
slightly different person, R1, now has even some intuition about the theorem
(whatever that means)...

Our reader R has reconstructed, in his mind, the author A’s theorem, from
what was published in the paper P . R’s task was harder than the task I face
when I try to reconstruct a theorem that at some point I knew — if I review
all that I have studied before, I should be able to fill up all my gaps, but R has
no guarantee that just by looking in the literature he will be able to find all the
missing knowledge he needs... even though we expect published papers to be
clear enough, and complete enough.

The process of reconstruction performed by R ought to be considered an
algorithm — even though we know that what R did to understand the paper P
was, at best, a “method”. Let’s see why, by examining an ideal case.

Suppose that the A wanted to be clear, that he was lucid in his choice of
exposition, and that the paper P was submitted to a journal with no space

2010diags December 4, 2010 18:34

13

constraints. So A, and also his editors and referees, want the paper P to be as
readable as possible. The reader R0 receives the paper P being aware that the
theorem T3 in it should be readable, and starts to devote his time to understand
T3. After a few weeks R succeeds.

What did the reader R do? And what did A and the journal’s editors do to
be sure that A would succeed in his task?

When R checks the paper’s details and fills up the gaps his process is akin
to proof search, and thus a kind of lifting... What R does is too complex to
be formalizable as an “algorithm”; yet the author and the editors are aware of
what their intended readers are expected to be able to do, and they added to
the paper enough “hints” to let the readers succeed — so the reader performs
a “proof search with hints”. There are algorithms that do proof searches with
hints, so let’s commit an abuse of language here and take the analogy with
algorithms seriously: the reader R is performing a proof search with hints, and
A provided enough hints in the paper P to be sure that, given P as input, the
reader R will check its theorems completing all the missing details, then stop.

Let’s now suppose that both A and R are people whose thinking is mostly
diagrammatical, like the semi-fictional “me”. How does does R (re)construct in
his mind some “intuition” about the theorems? The theorem T3 was published
in algebraic form, so part of R’s task — and he needs to do this to be able to
fill the logical gaps — is to find the diagrams to let him reason about the paper;
another part of his task is to work out the details in the paper’s examples; for
that he needs to take his “general” diagrams and apply them to particular cases;
this is specialization, as in Section 2. What we call “intuition” should comprise
the ability to specialize, plus a lot more.

11 Intuition

When R finally understands the paper P he would have developed some “in-
tuitions” about the theorem T . His intuitions may or may not be the same as
A’s, so let’s name them differently: IA for the author’s intuitions, IR for the
reader’s.

Instead of taking the easy way and saying that “it is impossible to talk about
what mathematical intuition is”, we will improvise a simple model that will let
us talk about some aspects of having intuition about a theorem. Let’s suppose
that that theorem T says that when the hypotheses H1 and H2 hold, then the
conclusion C2 also does; and the proof of T is made of two lemmas, L1 and L2,
and structured like this:

H1

C1
L1

H2

C2
L2

so the stronger theorem H1 ∧ H2 ⊢ C1 ∧ C2 is also true. Note that the tree
above represents T ′

1, not T3; T3 was written in a “linear”, “algebraic” way, to

2010diags December 4, 2010 18:34

14

comply with the usual mathematical practice, even though both A and R tend
to think diagrammatically.

The reader R1 is able to do several things with T ′
1; most of them can be

understood diagrammatically, as movements through parts of the diagram be-
low. Let’s use the following convention (that will hold for this diagram only): a
double bar with the name of a lemma at its right will stand for all the steps in

the lemma — they are known, but are not visible —, while a double bar without
a label will mean a situation where the intermediate steps are not known at that
moment, and will have to be reconstructed.

H1

C1
L1

H2

C2
L2

H1

C1
L1

(1)

����
��

��
��

H1

C1
L1

H2

C2
L2

H1

C1 H2

C2

(2)
��

H1

C1
L1

H2

C2
L2

H1[C := Set]

C1[C := Set]
L1

H2[C := Set]

C2[C := Set]
L2

(3)

&&MMMMMMMMMMM

H1

C1
L1

H1 ⊢ C1

(4)

��

H1

C1 H2

C2

H1, H2 ⊢ C2

(5)

��

H1[C := Set]

C1[C := Set]
L1

H2[C := Set]

C2[C := Set]
L2

H1[C:=Set], H2[C:=Set] ⊢ C2[C:=Set]

(6)
��

The center box is a sketch of the full proof, and the small box below it is
the statement of the full theorem. If the reader R1 remembers any of those, he
can reconstruct the other one by projecting or lifting through (5). The box at
the top is the full proof, and R1 can reconstruct it by completing the sketch of
the proof, lifting through (2).

One day R1 decides to present the theorem to some colleagues. He assigns
a temporal order to the lemmas: “Lemma L1 has to be presented first”. Its
statement and its proof are obtained by projecting through (1) and (4). Note
that (1) is a case of zooming in into a part of the proof.

R1 is also able to use the theorem. He can apply it to a particular case,
projecting through (3) and (6) or just through (3) (compare that with the arrow
(3) in Figure [Fib]). He can also reuse the structure of parts of the proof, but
changing the theorem in deeper ways (e.g., in the Curry-Howard isomorphism);
this is not shown above.

We will pretend that “having intuition about a theorem” means having
the abilities discussed above: remembering parts, reconstructing, zooming out,
zooming it, temporal order, transmission, specializing, reusing the structure.

2010diags December 4, 2010 18:34

15

12 Hyperdoctrines

Let’s take the beginning of the definition of a hyperdoctrine ([Law69], [Law70],
[See83], [Tay86], [Jac99]). A hyperdoctrine is a cloven fibration p : E → B,
where the “base category” B has finite products and each fiber EB is cartesian
closed, plus for each morphism f : A → B in B adjoints Σf ⊣ f∗ ⊣ Πf for the
change-of-base functor f∗, plus more structure; but let’s skip the “plus more
structure” part for the moment — we will describe that extra structure briefly
at the end of this section, and the full details can be found at [Och11] and
[Och10].

It turns out that this definition generalizes a familiar object: the “codomain
fibration”, Cod : Set֌ → Set — that we will abbreviate as Pred — is a hyper-
doctrine. Actually Pred can be considered to be the archetypical hyperdoctrine,
in a sense that can be made precise; we will return to “generalizations” and
“archetypes” in Section 15.

An object P of Set֌ is a monic: P ≡ (A′
֌ A). A morphism P → Q in

Set
֌, where Q ≡ (B′

֌ B), is a pair of arrows (f ′ : A′ → B′, f : A → B)
making the obvious square commute. The projection functor Cod takes P ≡
(A′

֌ A) to A and (f ′, f) : P → Q to f .
A monic with codomain A, (A′

֌ A), is said to be a subobject of A. In
Set we have canonical subobjects — the ones whose maps are inclusions —
and we can think of them as being predicates over sets. We will have a special
shorthand for predicates: instead of writing, for example,

{ (x, y) ∈ X × Y | P (x, y) } →֒ X × Y

we will write just:
{x, y || Pxy }

The double bar in ‘{x, y || Pxy }’ is to remind us that this is two objects, plus
a map; and we write the ‘֌’ as ‘→֒’ when we want to stress that the map is an
inclusion.

We will draw objects of E above their projections, and we’ll usually omit
the projection arrows. We will downcase a predicate like ‘{x, y || Pxy }’ in
diagrams as just ‘P (x, y)’ — the ‘x, y’ part can be recovered by looking down.

Let’s focus on what happens in Pred. For a map f : A → B in B, the
change-of-base functor f∗ takes each predicate { b || P (b) } over B to a predicate
{ a || P (f(a)) } over A. When f is a projection map, like π : X × Y → X, the
adjoints Σπ and Ππ “are” ∃y and ∀y; when f is the “diagonal” map ∆ : B →
B ×B or the “dependent diagonal” δ : A×B → A×B ×B, the adjoints “are”
the operations ‘b=b′∧’ and ‘b=b′ ��’. This is not hard to believe if we start with
the right examples, and we check first the particular cases and then generalize.
Take X = {0, 1, 2, 3, 4}, Y = {3, 4}, A = {0}, B = {0, 1, 2, 3}, and let’s use a
positional notation for predicates: we will write {x, y || x ≥ y } as 00001

00011 , i.e.:

{ (4,4),
(3,3),(4,3)} →֒ {(0,4),(1,4),(2,4),(3,4),(4,4),

(0,3),(1,3),(2,3),(3,3),(4,3)}

2010diags December 4, 2010 18:34

16

In the two diagrams below the left side shows the abstract view, the right
side shows a very particular case, and in the middle, in downcased notation,
we see how these change-of-base functors and their adjoints act on arbitrary
predicates.

P ΣπP
� //P

π∗Q
��

ΣπP

Q
��

oo //

π∗Q Qoo �
π∗Q

R
��

Q

ΠπR
��

oo //

R ΠπR
� //

X×Y X
π //

Pxy ∃y.Pxy+3Pxy

Qx

_

��

∃y.Pxy

Qx

_

��
oo //

Qx QxksQx

Rxy

_

��

Qx

∀y.Rxy

_

��
oo //

Rxy ∀y.Rxy+3

x, y x
� π //

00001
00011 00011

� //00001
00011

00111
00111

��

00011

00111
��

oo //

00111
00111 00111oo �00111
00111

01111
11111

��

00111

01111
��

oo //

01111
11111 01111

� //

X×Y X
π //

A×B A×B×B
δ // a, b a, b, b′�b′:=b // A×B A×B×B

δ //

P ΣδP
� //P

δ∗Q
��

ΣδP

Q
��

oo //

δ∗Q Qoo �
δ∗Q

R
��

Q

ΠδR
��

oo //

R ΠδR
� //

Pab b=b′∧Pab+3Pab

Qabb

_

��

b=b′∧Pab

Qabb′

_

��

oo //

Qabb Qabb′ksQabb

Rab

_

��

Qabb′

b=b′ ��Rab

_

��

oo //

Rab b=b′ ��Rab+3

1
0

0
0

0001
0000
0000
0000

� //
1

0
0

0

1
1

0
0

��

0001
0000
0000
0000

0011
0011
0011
0000

��
oo //

1
1

0
0

0011
0011
0011
0000

oo �1
1

0
0

1
1

1
0

��

0011
0011
0011
0000

1111
1111
1111
0111

��
oo //

1
1

1
0

1111
1111
1111
0111

� //

Each arrow ‘↔’ above stands for two transpositions, one in each direction.
Let’s establish another convention: P → f∗Q is an hom-set, but P ⊢ f∗Q is (the
name of) a morphism — we have P ⊢ f∗Q : P → f∗Q. With that convention
we can write the transpositions rules (cf. the “mate rules” in [Jac99]) as:

Q ⊢ ΠπR

π∗Q ⊢ R
∀♭

x;Qx ⊢ ∀y.Rxy

x, y;Qx ⊢ Rxy
∀♭

π∗Q ⊢ R

Q ⊢ ΠπR
∀♯

x, y;Qx ⊢ Rxy

x;Qx ⊢ ∀y.Rxy
∀♯

Note that ‘⊢’ has different meanings in standard and in downcased notations.
We will only use ‘⊢’ to refer to vertical morphisms.

It turns out that it is possible to define the adjoints Σf ⊣ f∗ ⊣ Πf , for an

2010diags December 4, 2010 18:34

17

arbitrary f : A → B, from f∗, Σπ, Ππ, Σδ, Πδ: in Pred,

{ a || P (a) } { b || ∃a.f(a)=b ∧ P (a) }� //{ a || P (a) }

{ a || Q(f(a)) }
��

{ b || ∃a.f(a)=b ∧ P (a) }

{ b || Q(b) }
��

oo //

{ a || Q(f(a)) } { b || Q(b) }oo �{ a || Q(f(a)) }

{ a || R(a) }
��

{ b || Q(b) }

{ b || ∀a.f(a)=b ��R(a) }
��

oo //

{ a || R(a) } { b || ∀a.f(a)=b ��R(a) }� //

A B
f //

The transpositions and the functor actions implicit in the adjunction dia-
gram above can be expressed as derived rules. The proof is hard (see [See83]);
we will see how to understand it diagrammatically in [Och11].

What really matters here is: how were the diagrams above obtained?
Look at the figure below; it shows some of the projections involved.
We start with the definition in English, at the top. By representing it di-

agrammatically (projection (1)) we lose the subtleties of the English language
— see [Fre76] and [FS90] for a diagrammatic notation in which at least the
quantifiers are preserved — but we add positional notation. The projections
(3) and (4) are specializations: we take E := Set

→֒, p := Cod, A := X × Y ,
and so on. The arrows (2) and (5) produce internal diagrams, as in the section
9. The downcased diagrams are not shown; Figure [Fib] is a map of interesting
projections, and it could have been far larger than it is.

2010diags December 4, 2010 18:34

18

A fibration p : E → B

plus for each f : A → B in B

adjoints Σf ⊣ f∗ ⊣ Πf

EA EB

Σf //

EA EB
oo f∗EA EB

Πf

//

⊥

⊥

E

B

p

��
A B

f //

Set
→֒
X×Y Set

→֒
X

Σπ //

Set
→֒
X×Y Set

→֒
X

oo π∗Set
→֒
X×Y Set

→֒
X

Ππ

//

⊥

⊥

Set
→֒

Set

Cod

��
X×Y X

π //

P ΣfP
� //P

f∗Q
��

ΣfP

Q
��

oo //

f∗Q Qoo �
f∗Q

R
��

Q

ΠfR
��

oo //

R ΠfR
� //

A B
f //

00001
00011 00011

� //00001
00011

00111
00111

��

00011

00111
��

oo //

00111
00111 00111oo �00111
00111

01111
11111

��

00111

01111
��

oo //

01111
11111 01111

� //

X×Y X
π //

A fibration p : E → B

plus for each f : A → B in B

adjoints Σf ⊣ f∗ ⊣ Πf

EA EB

Σf //

EA EB
oo f∗EA EB

Πf

//

⊥

⊥

E

B

p

��
A B

f //

(1)
��

EA EB

Σf //

EA EB
oo f∗EA EB

Πf

//

⊥

⊥

E

B

p

��
A B

f //

P ΣfP
� //P

f∗Q
��

ΣfP

Q
��

oo //

f∗Q Qoo �
f∗Q

R
��

Q

ΠfR
��

oo //

R ΠfR
� //

A B
f //

(2) //

EA EB

Σf //

EA EB
oo f∗EA EB

Πf

//

⊥

⊥

E

B

p

��
A B

f //

Set
→֒
X×Y Set

→֒
X

Σπ //

Set
→֒
X×Y Set

→֒
X

oo π∗Set
→֒
X×Y Set

→֒
X

Ππ

//

⊥

⊥

Set
→֒

Set

Cod

��
X×Y X

π //

(3)

��

P ΣfP
� //P

f∗Q
��

ΣfP

Q
��

oo //

f∗Q Qoo �
f∗Q

R
��

Q

ΠfR
��

oo //

R ΠfR
� //

A B
f //

00001
00011 00011

� //00001
00011

00111
00111

��

00011

00111
��

oo //

00111
00111 00111oo �00111
00111

01111
11111

��

00111

01111
��

oo //

01111
11111 01111

� //

X×Y X
π //

(4)
��

Set
→֒
X×Y Set

→֒
X

Σπ //

Set
→֒
X×Y Set

→֒
X

oo π∗Set
→֒
X×Y Set

→֒
X

Ππ

//

⊥

⊥

Set
→֒

Set

Cod

��
X×Y X

π //

00001
00011 00011

� //00001
00011

00111
00111

��

00011

00111
��

oo //

00111
00111 00111oo �00111
00111

01111
11111

��

00111

01111
��

oo //

01111
11111 01111

� //

X×Y X
π //

(5) //

Figure [Fib]

13 Preservations, Frobenius, Beck-Chevalley

The complete definition of a hyperdoctrine is what we have seen in the last
section, plus these properties:

• each f∗ preserves, modulo iso, the ⊤, the ∧, and the ��of each fiber;
• the Frobenius Property holds,
• the Beck-Chevalley Condition holds.
We can regard these properties as structure. They can all be stated in the

same way: for f : A → B in B and for predicates P and Q over B, we have
natural constructions P⊤♮, P∧♮, P ��♮, Frob♮, that produce arrows that we want
to be isos; so we establish rules P⊤, P∧, P ��, Frob, that produce arrows going
in the opposite directions of the previous ones.

f : A → B

f∗⊤B ⊢ ⊤A
P⊤♮

f : A → B

⊤A ⊢ f∗⊤B
P⊤

f P Q

f∗(P∧Q) ⊢ f∗P∧f∗Q
P∧♮

f P Q

f∗P∧f∗Q ⊢ f∗(P∧Q)
P∧

2010diags December 4, 2010 18:34

19

f Q R

f∗P∧f∗Q ⊢ f∗(Q ��R)
P

��♮ f Q R

f∗(Q ��R) ⊢ f∗P ��f∗Q
P

��
f P Q

Σf (P∧f∗Q) ⊢ (ΣfP)∧Q Frob
♮

f P Q

Σf (P∧f∗Q) ⊢ (ΣfP)∧Q Frob

The natural construction for the Frob♮ arrow is given by the diagram below.
Note that it shows both Frob

♮ (going rightwards, shortened to just ‘♮’) and Frob:

P ΣfP
� //

P∧f∗Q

POO

Σf (P∧f∗Q)

ΣfP66mmmmmmmm
(ΣfP)∧Q

ΣfPOO

f∗Q Qoo �

P∧f∗Q

f∗Q
��

Σf (P∧f∗Q)

Q
((QQQQQQQQQQ

(ΣfP)∧Q

Q
��

P∧f∗Q Σf (P∧f∗Q)� // Σf (P∧f∗Q) (ΣfP)∧Q
♮ //Σf (P∧f∗Q) (ΣfP)∧Qoo

Frob

� //

� //

A B
f //

Similarly to what we have done in the section 4, we can extract from the
diagram above a dictionary defining some names in terms of the others; note
that due to our conventions P∧f∗Q → P is a hom-set, but P∧f∗Q ⊢ P is
a particular morphism, and we can treat it as a name. By expanding the
definitions in Σf (P∧f∗Q) ⊢ (ΣfP)∧Q, we obtain a definition for the Frob♮ rule:

f P Q

Σf (P∧f∗Q) ⊢ (ΣfP)∧Q Frob
♮

:=

P

f Q

f∗Q
c.o.b.

P∧f∗Q ⊢ P
π

f

Σf (P∧f∗Q) ⊢ ΣfP
Σf

P

f Q

f∗Q
c.o.b.

P∧f∗Q ⊢ f∗Q
π′

Σf (P∧f∗Q) ⊢ Q
Σf

♭

Σf (P∧f∗Q) ⊢ (ΣfP)∧Q 〈, 〉

The diagram also says that the arrow generated by the Frob rule is inverse
to the arrow generated by the (derived) rule Frob

♮. This is by a convention: in
a ‘⇆’ the two arrows are the directions of an iso.

The statement of the Beck-Chevalley Condition (“BCC” from now on) is
slightly more complex: it requires four arrows in B. For any commutative

2010diags December 4, 2010 18:34

20

square in B as below,

f ′∗P Poo �
f ′∗P

z′∗f∗ΣzP
��

f ′∗P

f ′∗z∗ΣzP
((QQQQQQQQ P

z∗ΣzP
��

z′∗f∗ΣzP f ′∗z∗ΣzPoo // f ′∗z∗ΣzP z∗ΣzPoo �

f ′∗P

Σz′f ′∗P

�

##FF
FF

FF
FF

FF
FF

F P

ΣzP

�

##FFFFFFFFFFFFF

z′∗f∗ΣzP

f∗ΣzP

cc

�
FF

FF
FF

FF
FF

FF
F z∗ΣzP

ΣzP

cc

�
FFFFFFFFFFFFF

f∗ΣzP ΣzPoo �

ΣzP

ΣzP

id
��

Σz′f ′∗P

f∗ΣzP

♮
��

Σz′f ′∗P

f∗ΣzP

OO
BCCL

oo �

�
##FFF

FF cc

�
FFF

FF

X×Y Z Z
f ′

//X×Y Z

X

z′

##FFFFFFFFFFFFF Z

Y

z

##FFFFFFFFFFFFFF

X Y
f //

and any object P over Z, we have a natural construction for an arrow:

BCCL
♮ : Σz′f ′∗P → f∗ΣzP

The rule BCCL says that when f , f ′, z, z′ form a pullback the arrow BCCL
♮

has an inverse, BCCL:
f z f ′ z′ P

f∗ΣzP ⊢ Σz′f ′∗P
BCCL

We will sometimes write BCCL
♮ and BCCL together as an iso, and call that

iso BCCL (by a slight abuse of language); and we simplify the diagram for Beck-
Chevalley by drawing only its square in B and on top of it the two faces of the
cube in E that border on the missing edge. We will sometimes draw the arrows
generated by P⊤, P∧, P ��and Frob as isos, too.

14 The Eq-Elim rule

The main interest of hyperdoctrines is that they are exactly the categories in
which we can interpret (a certain system of typed, intuitionistic) first-order logic.
The proof of this includes a way to interpret each deduction rule of first-order
logic categorically, and another “translation” going in the opposite direction.

Let’s look at a tiny part — possibly the hardest one — of these translations.

The rule for equality-elimination in Natural Deduction can be formulated as
this ([See83], p.507):

b=b′ Qabb

Qabb′
=E

Categorically, it will become this morphism (we will call it =E):

{ a, b, b′ || b=b′∧Qabb } ⊢ { a, b, b′ || Qabb′ }

2010diags December 4, 2010 18:34

21

There are three different natural constructions in a hyperdoctrine for objects
deserving the name { a, b, b′ || b=b′∧Qabb }. We will use this one in =E:

a, b, b′ 7→b, b′
b 7→b, b′ { b || ⊤ }
{ b, b′ || b=b′ } Σ0

{ a, b, b′ || b=b′ } c.o.b.
a, b, b′ 7→a, b

a, b 7→a, b, b′ { a, b, b′ || Qabb′ }
{ a, b || Qabb } c.o.b.

{ a, b, b′ || Qabb′ } c.o.b.

{ a, b, b′ || b=b′∧Qabb′ } ∧

π′
∆ ⊤B

Σ∆⊤B
Σ0

π′∗Σ∆⊤B
c.o.b.

π

δ Q

δ∗Q
c.o.b.

π∗δ∗Q
c.o.b.

π′∗Σ∆⊤B∧π∗δ∗Q
∧

Note that π : A×B×B → A×B is the projection on the first two coordi-
nates, and π′ : A×B×B → B×B the projection on the last two coordinates. To
show that the rule =E can be interpreted in a hyperdoctrine we need a way to
construct, for arbitrary objects A, B in the base category and an arbitrary pred-
icate Q over A×B×B, a morphism π′∗Σ∆⊤B ∧ π∗δ∗Q ⊢ Q. We will construct
it as a composite of three maps.

Take P := ⊤B = { b || ⊤ }, f := π∗, z := ∆, z′ := δ, f ′ := π′ in the dia-
gram for Beck-Chevalley. Then the BCCL iso says that two different categorical
constructions for { a, b, b′ || b = b′ } are isomorphic, and by drawing also the
P⊤ iso and its image by Σδ we get isos between the three different categorical
constructions for { a, b, b′ || b = b′ }:

⊤A×B π′∗⊤B
oo P⊤ // π′∗⊤B ⊤B

oo �⊤A×B

Σδ⊤A×B

_

��

π′∗⊤B

Σδπ
′∗⊤B

_

��

⊤B

Σ∆⊤B

_

��

_

��

Σδ⊤A×B Σδπ
′∗⊤B

oo //Σδ⊤A×B

π′∗Σ∆⊤B

gg

i ''OOOOOOO
Σδπ

′∗⊤B

π′∗Σ∆⊤B

OO
BCCL��

π′∗Σ∆⊤B Σ∆⊤B
oo �

A×B B
π′

//A×B

A×B×B

δ

��

B

B×B

∆

��
A×B×B B×B

π′

//

⊤ ⊤oo P⊤ // ⊤ ⊤ks⊤

b=b′
��

⊤

b=b′
��

⊤

b=b′
��

_

��

b=b′ b=b′oo //b=b′

b=b′

dd

i $$JJJJJJ b=b′

b=b′

OO
BCCL
��

b=b′ b=b′ks

a, b b
�

π′

//a, b

a, b, b′

_

δ

��

b

b, b′

_

∆

��
a, b, b′ b, b′�

π′

//

Now look at the diagram below. The arrow Frob
′♮ (going rightwards, short-

ened to ♮) is built in the same way as Frob
♮, but using the maps ! and ∼= in

place of π and π′. In any fibration we have natural isos f∗g∗P ↔ (f ; g)∗P and
id∗P ↔ P (for diagrammatic proofs for that, see [Och11]), and as δ;π = id, this
gives us the map ∼=. The arrow Frob

′ is the inverse of Frob′♮; its construction

2010diags December 4, 2010 18:34

22

(not shown) is an easy consequence of Frobenius. The map εQ is a counit for
the adjunction Σδ ⊣ δ∗.

⊤A×B Σδ⊤A×B
� //

δ∗Q

⊤A×BOO

Σδδ
∗Q

Σδ⊤A×B77oooooooooo
(Σδ⊤A×B)∧π∗δ∗Q

Σδ⊤A×BOO

δ∗Q Σδδ
∗Q� // Σδδ
∗Q (Σδ⊤A×B)∧π∗δ∗Q

♮ //
Σδδ

∗Q (Σδ⊤A×B)∧π∗δ∗Qoo
Frob

′

δ∗Q

δ∗π∗(δ∗Q)

∼=
��

Σδδ
∗Q

π∗δ∗Q
''OOOOOOOOOOO (Σδ⊤A×B)∧π∗δ∗Q

π∗δ∗Q
��

δ∗π∗(δ∗Q) π∗δ∗Qoo �
π∗δ∗Q δ∗Qoo �

� //

� //

δ∗Q Σδδ
∗Q� //δ∗Q

δ∗Q

id

��

Σδδ
∗Q

Q

ǫQ

''OOOOOOOOOOOO

δ∗Q Qoo �

� //

A×B A×B×B
δ // A×B×B A×B

π //A×B A×B
id

//

If Q ≡ { a, b, b′ || Qabb′ } then we can downcase the diagram above as:

⊤ b=b′+3

Qabb

⊤

_

OO

b=b′∧Qabb

b=b′

1

88qqqqqqqqqq
b=b′∧Qabb

b=b′

_

OO

Qabb b=b′∧Qabb+3 b=b′∧Qabb b=b′∧Qabb
� ♮ //

b=b′∧Qabb b=b′∧Qabboo
Frob

′

�Qabb

Qabb

OO
∼=
��

b=b′∧Qabb

Qabb

&&MMMMMMMMMM b=b′∧Qabb

Qabb

_

��
Qabb Qabbks Qabb Qabbks

� //

� //

Qabb b=b′∧Qabb+3Qabb

Qabb

_

id

��

b=b′∧Qabb

Qabb′

ǫQ

&&MMMMMMMMMM

Qabb Qabb′ks

� //

a, b a, b, b′� b′:=b // a, b, b′ a, b
� //a, b a, b�

id
//

The arrow =E is the composite below.

Σδδ
∗Q (Σδ⊤A×B)∧π∗δ∗Qoo Frob

′

//Σδδ
∗Q

Q

εQ

��?
??

??
??

??
(Σδ⊤A×B)∧π∗δ∗Q

π′∗Σ∆⊤B∧π∗δ∗Q

__

i×π∗δ∗Q

��?
??

??
??

??

Q π′∗Σ∆⊤B∧π∗δ∗Qoo
=E

b=b′∧Qabb b=b′∧Qabboo //b=b′∧Qabb

Qabb′

�

��?
??

??
??

??
b=b′∧Qabb

b=b′∧Qabb

__

��?
??

??
??

??

Qabb′ b=b′∧Qabboo
=E

�____

2010diags December 4, 2010 18:34

23

15 Archetypal Models

Imagine that we have placed side to side the downcased and the standard dia-
grams of the last section.

When we go from downcased to standard — e.g, from { a, b || b=b′ ∧Qabb }
to Σδδ

∗Q — we are attributing a precise meaning to a (potentially ambigu-
ous) “name”; however, when we go in the opposite direction, from standard to
downcased, we are “attributing meaning” in another sense: we are giving an
“intuitive meaning” (or better: “intuitive content”) to something that, if we
had received it in an article, as in the section 10, could have felt initially as
something purely abstract...

I had to make some “informal definitions” in the course of this paper, using
terms that I could not define precisely, like diagrammatical reasoning, recon-
struction, and intuition... I will have to make a few more.

The archetypal model for a structure — for example, the archetypal
model for a hyperdoctrine, which is going to be Pred — is a partic-

ular case of that structure that “suggests” a certain “language” for

working on that structure — i.e., for doing constructions and proofs
on it.

That “archetypical language” does not need to be unambiguous — think
in { a, b || b=b′ ∧ Qabb } and its several different precise meanings —, does not
need to have a downcased version — in section 12 the internal diagrams were
what mattered, the downcasings were mentioned just in passing —, and does not
need to be convenient for expressing all possible constructions. What is relevant
is that the archetypical language, when used side-to-side with the “algebraic”

language, should give us a way to reason, both intuitively and precisely, about
the structure we’re working on; in particular, it should let us formulate reason-
able conjectures quickly, and check them with reasonable ease... but what are
“reasonable conjectures”, and where do they come from?

If we want to be able to reconstruct a theory from minimal information we
need to have ways to: 1) generate “reasonable conjectures”, 2) filter out those
which are either impossible or too hard to prove, 3) prove the others. Bounded
proof search takes care of points (1) and (2); to give a partial answer to (1)
we will concentrate our attention on Category Theory — more specifically, on
situations where we are trying to generalize a “base case”. There we have two
(non-disjoint) sources of “reasonable conjectures”: 1a) constructions and proofs
that make sense and hold in the base case, that we may expect to generalize; 1b)
language. Our choice of names for objects in a hyperdoctrine gave us several
different formal meanings for { a, b || b=b′ ∧ Qabb } — we expect them to be
at least equivalent modulo isomorphism. This is similar to writing a + b + c
instead of a + (b + c) or (a + b) + c: our choice of language “suggests” that
a+ (b+ c) = (a+ b) + c.

An “archetypal example”, in which all the main ideas appear, is:

Set is the archetypical CCC.

2010diags December 4, 2010 18:34

24

16 Cartesian Closed Categories

A Cartesian Closed Category (C,×, 1,→) is a category C plus a “cartesian
closed structure” (×, 1,→) on it. The following diagram fixes the (categorical)
notation that we will use for the operations induced by (×, 1,→):

A

B

f

����
��

��
��

��
A

B×C

〈f,g〉

��

A

C

g

��?
??

??
??

??
?

B B×Coo
π

B×C C
π′

//

A

1

!

��

A×B Aoo �
A×B

C

uncurg

��

A×B

C

f

��

A

B→C

g

��

A

B→C

curf

��

oo �
� //

C B→C
� //

Each of its three parts can be attributed a precise meaning, as we did with
the adjunction square in section 9; and if we regard each of them as a different
adjunction (see [Awo06], pages 182 and 188, for the three adjunctions), then we
get the equations that these operations have to obey.

The Big Theorem is: CCCs are exactly the categorical models for the simply-

typed λ-calculus with pairs and unit.

The precise, “standard” statement for that theorem, including definitions,
statements, and proofs, is quite long. Amazingly, it can be reconstructed from
just this downcased diagram,

a

b

?

����
��

��
��

��
a

b, c

_

��

a

c

�

��?
??

??
??

??
?

b b, coo �
b, c c

� //

a

∗

_

��

a, b aksa, b

c

_

��

a

b 7→ c

_

��

oo //

c b 7→ c+3

plus this downcasing of the Natural Deduction rules for ∧, ⊤, and ��:
a
....
b

a
....
c

b, c
〈, 〉 b, c

b
π

b, c

c
π′

a

∗ !

a
....
b

a
....

b 7→ c

c
app

a [b]1
....
c

b 7→ c
λ; 1

Starting from that, we uppercase the downcased diagram in the following
way, that makes clear how an intermediate, “sequent-like” form (as in [LS86],

2010diags December 4, 2010 18:34

25

pp.47–49), should behave:

A

B

a⊢b

����
��

��
��

��
A

B×C

a⊢〈b,c〉

��

A

C

a⊢c

��?
??

??
??

??
?

B B×Coo
p⊢πp

B×C C
p⊢πp′

//

A

1

a⊢∗

��

A×B Aoo �
A×B

C

a,b⊢fb

��

A×B

C

a,b⊢c
��

A

B→C

a⊢f

��

A

B→C

a⊢λb:B.c

��

oo �
� //

C B→C
� //

Then the next steps are to state precisely:
• the syntax and the rules of the type system,
• the operations of a CCC,
• the translation of each of the rules of the type system,
• the translation of each of the operations of the CCC,
• the reductions and conversions of the type system,
• the equations obeyed by the operations of a CCC,

and then we have to prove that the CCC equations are respected by the trans-
lation to λ-calculus, and that the λ-calculus equations are respected by the
translation to categories.

We also need to allow “impurities” in both the λ-calculus and in the CCCs.
Take a look at the CCC of the next section: it has extra constants — an
object A and morphisms p0q, p1q, +, · — that do not exist in all CCCs, and
these constants obey certain equations. In a Pure Type System ([Geu93]) extra
constants and equations are not allowed, but in theorems like the Big Theorem
above ([Jac99] has many more like it) we allow in type system exactly the kinds
of constants and equations that are easy to interpret in the categorical models.
The kinds of allowed “impurities” are usually defined in the beginning, in the
definition of the type system and of the categorical structure, but this can be
delayed until after the translations are presented.

17 Objects of Line Type

Our approach also works in cases where we do have an archetypical language
with clear intuitive content, but where we have no concrete archetypical model
besides a term model built purely syntactically. Through this section let’s pre-
tend that we do not know Synthetic Differential Geometry ([Koc80], [Bel08],
[MR91]).

Let (A, p0q, p1q,+, ·) be a commutative ring in a CCC. That means: we have
a diagram

1 A
p0q //1 A
p1q

// A A×A
oo +

A A×Aoo
·

∗ 0� //
∗ 1

� //
a+ b a, boo �

ab a, boo �

2010diags December 4, 2010 18:34

26

and the morphisms p0q, p1q, +, · behave as expected.
Let D be the set of zero-square infinitesimals of A, i.e., { ε ∈ A | ε2 = 0 }; D

can be defined categorically as an equalizer. If we take A := R, then D = {0};
but if we let A be a ring with nilpotent infinitesimals, then {0} (A.

The main theorem of [Koc77] says that if the map

α : A×A → (D→A)
(a, b) 7→ λε:D.(a+ bε)

is invertible, then we can use α and α−1 to define the derivative of maps from
A to A — every morphism f : A → A in the category C will be “differentiable”
—, and the resulting differentiation operation f 7→ f ′ behaves as expected: we
have, for example, (fg)′ = f ′g + fg′ and (f ◦ g)′ = (f ′ ◦ g)g′.

Commutative rings with the property that their map α is invertible are called
ring objects of line type. ROLTs are hard to construct, so most of the proofs
about them have to be done in a very abstract setting. However, if we can
use the following downcasings for α and α−1 — note that β = (α−1;π), that
γ = (α−1;π′), and that these notations do not make immediately obvious that
α and α−1 are inverses —,

A A×Aoo π
A×A A

π′

//A

(D→A)

__

β ??
??

??
??

? A×A

(D→A)

α

��

A×A

(D→A)

OO

α−1

A

(D→A)

??

γ

��
��

��
��

�

a a, boo π �
a, b b

� π′

//a

(ε 7→ a+ bε)

__

β

�
??

??
??

??
? a, b

(ε 7→ a+ bε)

_

α

��

b

(ε 7→ a+ bε)

??

γ
?��

��
��

��
��

f(0) (f(0), f ′(0))oo π �
(f(0), f ′(0)) f ′(0)� π′

//f(0)

(ε 7→ f(ε))

cc

β

�
GGGGGGGGGG

(f(0), f ′(0))

(ε 7→ f(ε))

OO

α−1

_

f ′(0)

(ε 7→ f(ε))

;;

γ
7wwwwwwwwww

then all the proofs in the first two sections of [Koc77] can be reconstructed from
half-diagrammatic, half-λ-calculus-style proofs, done in the archetypal language,
where the intuitive content is clear. This will be shown in a sequel to [Och11].

18 A Database of Categorical Theorems

We, the people who think mostly diagrammatically, would like to have a database

of theorems from Category Theory, all presented in a diagrammatical form.

This database would include the theorems I know, the theorems I have half-
forgotten, and lots of theorems that I never knew, that were added to the
database by other people.

That database already exists, but in a non-ideal, not-very-diagrammatical
form: it is the published literature on Category Theory. Each paper has its

2010diags December 4, 2010 18:34

27

own notion of “obviousness”: when an author skips over details and claims that
something is obvious, he supposes — in the spirit of section 10 — that the
reader will be able to fill up the gaps.

I started to work on this subject because my notion of “obvious” seemed to
be too different from the ones that I could find in the literature. The “archety-
pal models” being generalized are almost always mentioned in the papers, but
only in passing, and after all the axioms having been laid down; all the formal
arguments are made in the abstract notation only; and informal notations can
only be presented when they are used to prove new nontrivial results, and when
their formalization has been completed — but then they are not “informal”
anymore, and they have been promoted to “internal languages”, “term calculi”,
“proof nets”, “circuit diagrams”, etc ([JS91] is an early example of an informal
notation made formal, with a nice discussion).

As each notion of “obvious” is backed by a method for proof search, it
ought to be possible to formalize — even if roughly — how each such proof-
search method would work; and each different notion of what is “obvious” leads
to a different way to present, and store, theorems. The same theorem T is
remembered by a reader R1 as T1 and by a reader R2 as T2; as the two readers
reconstruct the missing details the theorems grow to T ′

1, T ′
2, T ′′

1 , T ′′
2 . If we

could put these objects side to side we could clarify how these different kinds of
reasonings work.

It is possible to reason coherently with infinitesimals. This became clear
when Non-Standard Analysis was invented, and then even clearer when Syn-
thetical Differential Geometry came up. One way to prove that a way of rea-
soning is coherent is to model it mathematically — and to show that the model
has good properties. NSA and SDG “validate” reasonings with infinitesimals.
Similarly, one way to validate reasonings based on internal diagrams, archetypal
languages and informal notations is to formalize how these reasonings work —
and to build bridges between them and the standard ways.

Diagrams like the ones in sections 13 and 14 can be interpreted formally: a
diagram induces a dictionary, which induces trees, which then let us interpret
each object and arrow from the diagram as a λ-term. A full set of rules for
interpreting diagrams can be developed — including ways to deal with lists
of exceptions and hints — and so it would be conceivable to have a database
of categorical definitions and theorems in which the entries would appear as
diagrams (plus their associated hints), but at the same time they would have
precise meanings, understood by a proof assistant...

Note that diagrams are becoming more and more meaningful mathematically
in the last decades. Compare these ideas with the discussion in [Krö07], p.83,
where he quotes this from [ES52], p.xi:

The diagrams incorporate a large amount of information. Their use
provides extensive savings in space and in mental effort. In the case
of many theorems, the setting up of the correct diagram is the major
part of the proof. We therefore urge that the reader stop at the end
of each theorem and attempt to construct for himself the relevant

2010diags December 4, 2010 18:34

REFERENCES 28

diagram before examining the one which is given in the text. Once
this is done, the subsequent demonstration can be followed more
readily; in fact, the reader can usually supply it himself.

19 Epilogue

This is an atypical paper. It has no theorems, and it doesn’t prove any new
mathematical truths — instead, we have shown several ways to represent con-
structions, and to structure proofs in several layers.

“Theorems” usually involve equalities between constructions, and hence they
do not belong do the lowest layers; there are even ways — not detailed here —
to “project out” the parts of a theorem that involve equalities, and keep only the
constructions... The result is a sort of a “syntactical skeleton” of the theorem.

Our “structuring” puts a situation with total information at the top, and
below that, in different, parallel “legs”, we put different partial views. Theorems
do not belong to the structuring, either.

At some point we will have “meta-theorems” about properties of this struc-
turing. But finding these meta-theorems should not be top priority right now:
these meta-theorems will use known theorems, and at this point it is more im-
portant to put more known theorems in this format.

The above may look too vague, too philosophical (in contraposition to “math-
ematical”), too abstract. Category Theory used to be called “abstract non-
sense”; the ideas of this paper, then, could look like “meta-abstract nonsense”...
However, we are not pointing only towards the more abstract: we are showing
ways — and reasons — to do the general in parallel with the particular, and to
arrange the results of doing mathematics like that in forms that are better for
reconstruction and transmission.

Our structuring allows the controlled use of informal notations. Several
different informal notations can be used in parallel at the same time. This can
be useful for comparing different people’s notations, and for changing details
on a notation and letting it evolve over time. The database of categorical
knowledge proposed in the last section does not need a unified notation, and
one of its functions could be to serve as a dictionary between notations — and
as a way to make parts of the existing literature more accessible.

References

[Awo06] S. Awodey. Category Theory. Oxford University Press, 2006.

[Bel08] J. L. Bell. A Primer of Infinitesimal Analysis. Cambridge, 2008.

[BJP10] J. P. Bernardy, P. Jansson, and R. Paterson. Parametricity and de-
pendent types. International Conference on Functional Programming,
2010. http://www.cse.chalmers.se/~bernardy/ParDep/pardep.

pdf.

2010diags December 4, 2010 18:34

http://www.cse.chalmers.se/~bernardy/ParDep/pardep.pdf
http://www.cse.chalmers.se/~bernardy/ParDep/pardep.pdf

REFERENCES 29

[ES52] S. Eilenberg and N. Steenrod. Foundations of algebraic topology.
Princeton, 1952.

[Fre76] P. Freyd. Properties invariant within equivalence types of categories.
In A. Heller and M. Tierney, editors, Algebra, Topology and Category

Theory: A Collection of Papers in Honour of Samuel Eilenberg, pages
55–61. Academic Press, 1976.

[FS90] P. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.

[Geu93] H. Geuvers. Logics and Type Systems. PhD thesis, University of Ni-
jmegen, 1993.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies
in Logic and the Foundations of Mathematics. North-Holland, Elsevier,
1999.

[JS91] A. Joyal and R. Street. The geometry of tensor calculus i. Advances

in Mathematics, 88:55–112, 1991.

[Koc77] A. Kock. A simple axiomatics for differentiation. Mathematica Scandi-

navica, 40(2):183–193, 1977. http://www.mscand.dk/article.php?

id=2356.

[Koc80] A. Kock. Synthetic Differential Geometry. Cambridge, 1980. http://
home.imf.au.dk/kock/sdg99.pdf.

[Krö07] R. Krömer. Tool and Object: A History and Philosophy of Category

Theory. Birkhäuser, 2007.

[Law69] W. Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969.

[Law70] W. Lawvere. Equality in hyperdoctrines and comprehension schema as
an adjoint functor. Proceedings of the American Mathematical Society

Symposium on Pure Mathematics XVII, 999:1–14, 1970.

[LS86] J. Lambek and P. Scott. Introduction to Higher-Order Categorical

Logic. Cambridge, 1986.

[LS97] W. Lawvere and S. Schanuel. Conceptual Mathematics: A first intro-

duction to categories. Cambridge, 1997.

[MR91] I. Moerdijk and G. E. Reyes. Models for Smooth Infinitesimal Analysis.
Springer, 1991.

[Och10] E. Ochs. Downcasing types. Slides for a presentation at the
UniLog’2010. http://angg.twu.net/math-b.html#unilog-2010,
2010.

[Och11] E. Ochs. Downcasing hyperdoctrines. In preparation, 2011.

2010diags December 4, 2010 18:34

http://www.mscand.dk/article.php?id=2356
http://www.mscand.dk/article.php?id=2356
http://home.imf.au.dk/kock/sdg99.pdf
http://home.imf.au.dk/kock/sdg99.pdf
http://angg.twu.net/math-b.html#unilog-2010

REFERENCES 30

[See83] R. A. G. Seely. Hyperdoctrines, natural deduction, and the beck condi-
tion. Zeitschrift f. math. Logik und Grundlagen d. Math., 29:505–542,
1983.

[Tay86] P. Taylor. Recursive Domains, Indexed Category Theory and Polymor-

phism. PhD thesis, Cambridge, 1986.

[Wad89] P. Wadler. Theorems for free! In Proc. FPCA’89, pages 347–359.
ACM, 1989.

2010diags December 4, 2010 18:34

	Mental Space and Diagrams
	Projections and Liftings
	Downcased Types
	The Dictionary
	Internal Diagrams
	Parallel Notations
	Functors
	Natural Transformations
	Adjunctions
	Transmission
	Intuition
	Hyperdoctrines
	Preservations, Frobenius, Beck-Chevalley
	The Eq-Elim rule
	Archetypal Models
	Cartesian Closed Categories
	Objects of Line Type
	A Database of Categorical Theorems
	Epilogue

