Notes (very preliminary!) on down casing: $\,$

Kock, Anders: A simple axiomatics for differentiation.

Math. Scand. 40 (1977), no. 2, 183-193.

http://www.mscand.dk/

http://www.mscand.dk/article.php?id=2356

The idea of "downcasing" is detailed here:

http://angg.twu.net/math-b.html#internal-diags-in-ct

http://angg.twu.net/LATEX/2010diags.pdf

Its section 17 is about "ring objects of line type".

Diagrams for the definition of the map α :

K77's Proposition 1: $\alpha: A \times A \to A^D$ is a morphims of ring objects.

```
The translation to \lambda-calculus:
```

The translation to
$$\lambda$$
-calculus:
Let $\lceil 0 \rceil^T := \lambda * .(0,0)$.
Let $\lceil 1 \rceil^T := \lambda * .(1,0)$.
Let $+^T := \lambda((b,b_a),(c,c_a)).(b+c,b_a+c_a)$.
Let $\cdot^T := \lambda((b,b_a),(c,c_a)).(bc,b_ac+bc_a)$.
The $(\lceil 0 \rceil^T,\lceil 1 \rceil^T,+^T,^T)$ is a ring object.
Let $\lceil 0 \rceil^D := \lambda * .\lambda da$.0.
Let $\lceil 1 \rceil^D := \lambda * .\lambda da$.1.
Let $+^D := \lambda(f_\Delta,g_\Delta),\lambda da.(f(da)+g(da))$.
Let $\cdot^D := \lambda(f_\Delta,g_\Delta),\lambda da.(f(da)g(da))$.
The $(\lceil 0 \rceil^D,\lceil 1 \rceil^D,+^D,\cdot^D)$ is a ring object.

Let
$$\check{\alpha} := \lambda(b, b_a, da).(b + b_a da).$$

Let $\alpha := \lambda(b, b_a).\lambda da.(b + b_a da).$

Then α is a ring homomorphism.

Let
$$\hat{+} := \lambda a.\lambda da.(a + da)$$
.
Let $\tau := \lambda a.\langle a, 1 \rangle$.

Then τ ; $\alpha = \hat{+}$.

Let
$$\beta^{\natural} := \lambda f_{\Delta}.f_{\Delta}(0).$$

Then $\alpha; \beta^{\natural} = \pi$.

From now on let's suppose that α is an iso.

Let
$$\beta := \alpha^{-1}; \pi$$
.

Let
$$\gamma := \alpha^{-1}; \pi'$$
.

Then $\beta = \beta^{\natural}$.

Let's now define the derivative of a function $f: A \to A$.

Let
$$f' := \lambda a. \gamma(\lambda da. f(a + da)).$$

First Taylor lemma: $\lambda(a, da) \cdot f(a + da) = \lambda(a, da) \cdot f(a) + f'(a) da$.

Abbreviated form: f(a + da) = f(a) + f'(a)da.

Let
$$(f+g) := \lambda a.f(a) + g(a)$$
.

Let
$$(fg) := \lambda a.f(a)g(a)$$
.

Let
$$(f \circ g) := \lambda a.f(g(a)).$$

Product rule:

$$(fg)(a+da) = f(a+da)g(a+da)$$

$$= (f(a) + f'(a)da)(g(a) + g'(a)da)$$

$$= f(a)g(a) + (f'(a)g(a) + f(a)g'(a))da + f'(a)g'(a)da^{2}$$

$$= f(a)g(a) + (f'(a)g(a) + f(a)g'(a))da$$

$$= (fg)(a) + (f'g + fg')(a)da$$

Chain rule:

$$(f \circ g)(a + da) = f(g(a + da))$$

$$= f(g(a) + g'(a)da)$$

$$= f(g(a)) + f'(g(a))g'(a)da$$

$$= (f \circ g)(a) + ((f' \circ g)g')(a)da$$

(Section 17 of the "Internal Diagrams" paper:)

Let $(R, \lceil 0 \rceil, \lceil 1 \rceil, +, \cdot)$ be a commutative ring in a CCC. That means: we have a diagram

$$1 \xrightarrow{ \lceil 0 \rceil} A \Leftrightarrow A \times A$$

$$* \longmapsto 0$$

$$* \longmapsto 1$$

$$a+b \iff a, b$$

$$ab \iff a \ b$$

and the morphisms $\lceil 0 \rceil$, $\lceil 1 \rceil$, +, · behave as expected.

Let D be the set of zero-square infinitesimals of A, i.e., $\{ \varepsilon \in A \mid \varepsilon^2 = 0 \}$; D can be defined categorically as an equalizer. If we take $A := \mathbb{R}$, then $D = \{0\}$; but if we let A be a ring with nilpotent infinitesimals, then $\{0\} \subseteq A$.

The main theorem of [Kock77] says that if the map

$$\begin{array}{cccc} \alpha: & A \times A & \rightarrow & (D {\rightarrow} A) \\ & (a,b) & \mapsto & \lambda \varepsilon {:} D. (a+b\varepsilon) \end{array}$$

is invertible, then we can use α and α^{-1} to define the derivative of maps from A to A— every morphism $f:A\to A$ in the category ${\bf C}$ will be "differentiable"—, and the resulting differentiation operation $f\mapsto f'$ behaves as expected: we have, for example, (fg)'=f'g+fg' and $(f\circ g)'=(f'\circ g)g'$.

Commutative rings with the property that their map α is invertible are called ring objects of line type. ROLTs are hard to construct, so most of the proofs about them have to be done in a very abstract setting. However, if we can use the following downcasings for α and α^{-1} — note that $\beta = (\alpha^{-1}; \pi)$, that $\gamma = (\alpha^{-1}; \pi')$, and that these notations do not make immediately obvious that α and α^{-1} are inverses —,

and then all the proofs in the first two sections of [Kock77] can be reconstructed from half-diagrammatic, half- λ -calculus-style proofs, done in the archetypal language, where the intuitive content is clear. This will be shown in a sequel to [OchsHyp].