|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015oppositions.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex 2015oppositions.tex"))
% (defun c () (interactive) (find-LATEXsh "lualatex --output-format=dvi 2015oppositions.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2015oppositions.pdf"))
% (defun d () (interactive) (find-xdvipage "~/LATEX/2015oppositions.dvi"))
% (defun e () (interactive) (find-LATEX "2015oppositions.tex"))
% (defun l () (interactive) (find-LATEX "2015oppositions.lua"))
% (find-pdf-page "~/LATEX/2015oppositions.pdf")
\documentclass[oneside]{book}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{tikz}
\usepackage{luacode}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
% (find-dn5file "preamble6.lua" "preamble0 =")
\usepackage{proof} % For derivation trees ("%:" lines)
\input diagxy % For 2D diagrams ("%D" lines)
\xyoption{curve} % For the ".curve=" feature in 2D diagrams
\usepackage{edrx15} % (find-LATEX "edrx15.sty")
\input istanbuldefs % (find-ist "defs.tex")
\begin{document}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% http://angg.twu.net/LATEX/2015oppositions.pdf
% https://mail.google.com/mail/ca/u/0/#sent/14e7def7753d04c7
\par Notes on the Logical Hexagon (for children)
\par See: \url{http://en.wikipedia.org/wiki/Logical_hexagon}
\par and: \url{http://angg.twu.net/math-b.html\#istanbul}
\par Eduardo Ochs - eduardoochs@gmail.com - 2015jul11
\bsk
Main idea: the logical hexagon becomes more concrete if we look at the
behavior of the propositions at its vertices in a finite number of
cases (``worlds'').
For each proposition $P(x,y)$, our matrix representation shows the
values of:
%
$$\mat{P(0,2) & P(1,2) & P(2,2) \\
P(0,1) & P(1,1) & P(2,1) \\
P(0,0) & P(1,0) & P(2,0)}
$$
I don't know the conventions for drawing the arrows meaning
contrariety, subcontrariety, etc, so I am not drawing them.
\msk
A logical hexagon:
%\def\m#1#2#3#4#5#6#7#8#9{\mat{#1\\#4\\#7	\\}}
%\def\m#1#2#3#4#5#6#7#8#9{\mat{#1#2#3\\#4#5#6\\#7#8#9\\}}
\def\m#1#2#3#4#5#6#7#8#9{\sm {#1#2#3\\#4#5#6\\#7#8#9\\}}
%D diagram hexagon
%D 2Dx 100 +30 +30 +30 +30 +30
%D 2D 100 x!=y X!=Y
%D 2D
%D 2D +20 x<y x>y X<Y X>Y
%D 2D
%D 2D +30 x<=y x>=y X<=Y X>=Y
%D 2D
%D 2D +20 x=y X=Y
%D 2D
%D (( x<=y .tex= x≤y
%D x>=y .tex= x≥y
%D x!=y .tex= x≠y
%D ))
%D (( x=y x<=y x>=y x<y x>y x!=y
%D @ 0 @ 1 -> @ 0 @ 2 ->
%D @ 1 @ 3 <- @ 2 @ 4 <-
%D @ 3 @ 5 -> @ 4 @ 5 ->
%D ))
%D (( X=Y .tex= \m001010100
%D X<=Y .tex= \m111110100
%D X>=Y .tex= \m001011111
%D X<Y .tex= \m110100000
%D X>Y .tex= \m000001011
%D X!=Y .tex= \m110101011
%D ))
%D (( X=Y X<=Y X>=Y X<Y X>Y X!=Y
%D @ 0 @ 1 -> @ 0 @ 2 ->
%D @ 1 @ 3 <- @ 2 @ 4 <-
%D @ 3 @ 5 -> @ 4 @ 5 ->
%D ))
%D enddiagram
%D
\pu
$$\diag{hexagon}$$
% (find-ist "-july.tex" "dxyren")
%
%L forths["="] = function () pusharrow("=") end
%L
%L dxyren = function (li)
%L local a, b = li:match("^(.*) =+> (.*)$")
%L local A, B = split(a), split(b)
%L for i=1,#A do nodes[A[i]].tex = B[i] end
%L end
%L forths["ren"] = function () dxyren(getrestofline()) end
Modal hexagon on S5:
(We use this Kripke frame, $\sm{a{↔}b\\c{↔}d\\e{↔}f\\}$, and
$A=\sm{00\\01\\11}$)
%D diagram hexagon-modal
%D 2Dx 100 +30 +30 +30 +30 +30
%D 2D 100 BAvBNA bavbna
%D 2D
%D 2D +20 BA BNA ba bna
%D 2D
%D 2D +30 DA DNA da dna
%D 2D
%D 2D +20 DA&DNA da&dna
%D 2D
%D ren BAvBNA bavbna => ◻A∨◻¬A \sm{11\\00\\11}
%D ren BA BNA ba bna => ◻A ◻¬A \sm{00\\00\\11} \sm{11\\00\\00}
%D ren DA DNA da dna => ⋄A ⋄¬A \sm{00\\11\\11} \sm{11\\11\\00}
%D ren DA&DNA da&dna => ⋄A∧⋄¬A \sm{00\\11\\00}
%D
%D (( BAvBNA BA BNA DA DNA DA&DNA
%D @ 0 @ 1 <- @ 0 @ 2 <-
%D @ 1 @ 3 -> @ 2 @ 4 ->
%D @ 3 @ 5 <- @ 4 @ 5 <-
%D ))
%D (( bavbna ba bna da dna da&dna
%D @ 0 @ 1 <- @ 0 @ 2 <-
%D @ 1 @ 3 -> @ 2 @ 4 ->
%D @ 3 @ 5 <- @ 4 @ 5 <-
%D ))
%D enddiagram
%D
\pu
$$\diag{hexagon-modal}$$
% http://www.logicalgeometry.org/papers-published.htm
% https://perswww.kuleuven.be/~u0012115/Smessaert_Demey_Square2014_Bitstrings_slides.pdf
% https://en.wikipedia.org/wiki/Algebraic_logic
% https://en.wikipedia.org/wiki/Monadic_Boolean_algebra
\end{document}