|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-C2-VS.tex")
% (find-angg "LATEX/2016-1-C2-VS.lua")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-C2-VS.tex" :end))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-C2-VS.pdf"))
% (defun e () (interactive) (find-LATEX "2016-1-C2-VS.tex"))
% (defun u () (interactive) (find-latex-upload-links "2016-1-C2-VS"))
% (find-xpdfpage "~/LATEX/2016-1-C2-VS.pdf")
% (find-sh0 "cp -v ~/LATEX/2016-1-C2-VS.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2016-1-C2-VS.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2016-1-C2-VS.pdf
% file:///tmp/2016-1-C2-VS.pdf
% file:///tmp/pen/2016-1-C2-VS.pdf
% http://angg.twu.net/LATEX/2016-1-C2-VS.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{tikz}
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-dn4ex "edrxgac2.tex")
%
\begin{document}
% \catcode`\^^J=10
% \directlua{dednat6dir = "dednat6/"}
% \directlua{dofile(dednat6dir.."dednat6.lua")}
% \directlua{texfile(tex.jobname)}
% \directlua{verbose()}
% %\directlua{output(preamble1)}
% \def\expr#1{\directlua{output(tostring(#1))}}
% \def\eval#1{\directlua{#1}}
% \def\pu{\directlua{pu()}}
%
% \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
% %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
% ____ _ _ _
% / ___|__ _| |__ ___ ___ __ _| | |__ ___
% | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \
% | |__| (_| | |_) | __/ (_| (_| | | | | | (_) |
% \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/
%
{\setlength{\parindent}{0em}
\footnotesize
\par Cálculo 2
\par PURO-UFF - 2016.1
\par VR - 3/ago/2016 - Eduardo Ochs
\par Links importantes:
\par \url{http://angg.twu.net/2016.1-C2.html} (página do curso)
\par \url{http://angg.twu.net/2016.1-C2/2016.1-C2.pdf} (quadros)
\par \url{http://angg.twu.net/LATEX/2016-1-C2-VR.pdf} (esta prova)
\par {\tt eduardoochs@gmail.com} (meu e-mail)
}
\setlength{\parindent}{0em}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\B (#1 pts){{\bf(#1 pts)}}
\bsk
\bsk
% (find-es "ipython" "2016.1-C2-P2")
% (find-books "__analysis/__analysis.el" "stewart")
% (find-stewart7page 1376 "Table of integrals")
% (find-angg ".emacs.papers" "hernandez")
1) \T(Total: 6.0 pts) Calcule:
$$a) \quad \B(2.0 pts) \quad \intx {\frac {x^3} {x^2 - 4}}$$
$$b) \quad \B(2.0 pts) \quad \intx {\frac 1 {x\sqrt{x^2-1}}}$$
$$c) \quad \B(2.0 pts) \quad \Intx {-2} {2} {|x^2-1|}$$
\bsk
2) \T(Total: 2.0 pts) Seja (*) esta EDO: $f'' + 2f' + 5f = 0$.
a) \B(1.0 pts) Encontre as soluções básicas reais de $(*)$.
b) \B(1.0 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=0$ e $f'(0)=1$.
\bsk
3) \T(Total: 1.0 pts) Seja (**) esta EDO: $f'(x) = (2x-2)/e^{f(x)}$.
Encontre a solução geral de (**).
% a) \B(1.0 pts)
\bsk
4) \T(Total: 1.5 pts)
a) \B(0.5 pts) Teste a sua solução da 1a.
a) \B(0.5 pts) Teste a sua solução da 1b.
a) \B(0.5 pts) Teste a sua solução da 3.
% b) \B(1.0 pts) Encontre uma solução de (**) que obedeça $f(0)=10$.
\newpage
Método de Heaviside:
Se $f(x) = \frac{\aa}{x-a} + \frac{\bb}{x-b} + \frac{\cc}{x-c} = \frac{p(x)}{(x-a)(x-b)(x-c)}$,
então $\lim_{x \to a} f(x)(x-a) = \aa = \frac{p(a)}{(a-b)(a-c)}$.
\bsk
Substituição:
\msk
$\begin{array}{l}
\difx a b {g(h(x))} = \Intx a b {g'(h(x))\frac{d\,h(x)}{dx}} \\
\phantom{mmm}|\,| \\
\difu {h(a)} {h(b)} {g(u))} = \Intu {h(a)} {h(b)} {g'(u)} \\
\end{array}
$
\msk
Fórmulas:
\msk
$\begin{array}{l}
\Intx a b {f(g(x))\frac{d\,g(x)}{dx}} \\
= \Intx a b {f(u)\frac{du}{dx}} \\
= \Intu {g(a)} {g(b)} {f(u)}
\end{array}
\qquad
\begin{array}{ll}
\intx {f(g(x))\frac{d\,g(x)}{dx}} \\
= \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)} \\
= \intu {f(u)} & \subst{u=g(x)}
\end{array}
$
\bsk
Substituição inversa:
$\def\a{{h¹(α)}}
\def\b{{h¹(β)}}
\begin{array}{l}
\Difx \a \b {g(h(x))} = \Intx \a \b {g'(h(x))\frac{d\,h(x)}{dx}} \\
\phantom{mmm}|\,| \\
\Difu {h(\a)} {h(\b)} {g(u))} = \Intu {h(\a)} {h(\b)} {g'(u)} \\
\phantom{mmm}|\,| \\
\Difu α β {g(u))} = \Intu α β {g'(u)} \\
\end{array}
$
\msk
Fórmulas:
\msk
$\def\a{{g¹(α)}}
\def\b{{g¹(β)}}
\begin{array}{l}
\Intu α β {f(u)} \\
= \Intx \a \b {f(u)\frac{du}{dx}} \\
= \Intx \a \b {f(g(x))\frac{d\,g(x)}{dx}}
\end{array}
\qquad
\begin{array}{ll}
\intu {f(u)} \\
= \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)\\x=g¹(u)} \\
= \intx {f(g(x))\frac{d\,g(x)}{dx}} & \subst{x=g¹(u)} \\
\end{array}
$
\bsk
Substituição trigonométrica:
\msk
$
\begin{array}{ll}
\Ints a b {F(s, \sqrt{1-s^2})} \\
= \Intth {\arcsen a} {\arcsen b} {F(\senθ, \sqrt{1-\sen^2θ}) \frac{d\senθ}{dθ}} \\
= \Intth {\arcsen a} {\arcsen b} {F(\senθ, \cosθ) \cosθ} \\
\end{array}
\qquad
\begin{array}{ll}
\ints {F(s, \sqrt{1-s^2})} \\
= \intth {F(s, \sqrt{1-s^2}) \frac{ds}{dθ}} & \subst{s=\senθ \\ θ=\arcsenθ} \\
= \intth {F(s, c) c} & \subst{s=\senθ \\ c=\cosθ \\ θ=\arcsenθ} \\
\end{array}
$
\msk
$
\begin{array}{ll}
\Intz a b {F(z, \sqrt{z^2-1})} \\
= \Intth {\arcsec a} {\arcsec b} {F(\secθ, \sqrt{\sec^2θ-1}) \frac{d\secθ}{dθ}} \\
= \Intth {\arcsec a} {\arcsec b} {F(\secθ, \tanθ) \secθ \tanθ} \\
\end{array}
\qquad
\begin{array}{ll}
\intz {F(z, \sqrt{z^2-1})} \\
= \intth {F(z, \sqrt{z^2-1}) \frac{dz}{dθ}} & \subst{z=\secθ \\ θ=\arcsec z} \\
= \intth {F(z, t) zt} & \subst{z=\secθ \\ θ=\arcsec z \\ t=\tanθ} \\
\end{array}
$
\msk
$
\begin{array}{ll}
\Intt a b {F(t, \sqrt{1+t^2})} \\
= \Intth {\arctan a} {\arctan b} {F(\tanθ, \sqrt{1+\tan^2θ}) \frac{d\tanθ}{dθ}} \\
= \Intth {\arctan a} {\arctan b} {F(\tanθ, \secθ) \sec^2θ} \\
\end{array}
\qquad
\begin{array}{ll}
\intt {F(t, \sqrt{1+t^2})} \\
= \intth {F(t, \sqrt{1+t^2}) \frac{dt}{dθ}} & \subst{t=\tanθ \\ θ=\arctan t} \\
= \intth {F(t, z) z^2} & \subst{t=\tanθ \\ θ=\arctan t \\ z=\secθ} \\
\end{array}
$
\newpage
Mini-gabarito:
(não revisado, contém erros)
\bsk
% (find-es "ipython" "2016.1-C2-VS")
1a) $\frac {x^3} {x^2 - 4} = x + \frac{2}{x+2} + \frac{2}{x-2}$
$\intx {\frac {x^3} {x^2 - 4}} = \intx {x + \frac{2}{x+2} + \frac{2}{x-2}}
= \frac{x^2}{2} + 2 \ln|x+2| + 2 \ln|x-2|$
\msk
1b) $\intx {\frac 1 {x\sqrt{x^2-1}}} = \arcsec x$
\msk
1c) $\Intx {-2} {2} {|x^2-1|}
= \Intx {-2} {-1} {(x^2-1)} + \Intx {-1} {1} {(1-x^2)} + \Intx {1} {2} {(x^2-1)}
$
$= \frac{4}{3} + \frac{4}{3} + \frac{4}{3}
= 4
$
\bsk
2a) $f_1(x) = e^{-x}\cos 2x$, $f_2(x) = e^{-x}\sen 2x$.
2b) $f_3(x) = \frac12 e^{-x}\sen 2x$.
\bsk
3) $\frac{dy}{dx} = \frac {2x-2} {e^y}$
$e^{-y} dy = (2x-2) dx$
$\inty {e^{-y}} = \intx {2x-2} + C_1$
$- {e^{-y}} = x^2 - 2x + C_1$
${e^{-y}} = 2x - x^2 + C_2$
$-y = \ln(2x - x^2 + C_2)$
$y = -\ln(2x - x^2 + C_2)$
\end{document}
% Local Variables:
% coding: utf-8-unix
% End: