|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-1-GA-P1.tex")
% (find-angg "LATEX/2016-1-GA-P1.lua")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-GA-P1.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-GA-P1.pdf"))
% (defun e () (interactive) (find-LATEX "2016-1-GA-P1.tex"))
% (defun u () (interactive) (find-latex-upload-links "2016-1-GA-P1"))
% (defun z () (interactive) (find-zsh "flsfiles-tgz 2016-1-GA-P1.fls 2016-1-GA-P1.tgz"))
% (find-xpdfpage "~/LATEX/2016-1-GA-P1.pdf")
% (find-xdvipage "~/LATEX/2016-1-GA-P1.dvi")
% (find-sh0 "cp -v ~/LATEX/2016-1-GA-P1.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2016-1-GA-P1.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2016-1-GA-P1.pdf
% file:///tmp/2016-1-GA-P1.pdf
% file:///tmp/pen/2016-1-GA-P1.pdf
% http://angg.twu.net/LATEX/2016-1-GA-P1.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{tikz}
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
%
\begin{document}
% (find-LATEXfile "2015-2-GA-P1-gab.tex" "setofxyst")
% (find-LATEXfile "2015-1-GA-P2-gabarito.tex" "setxyst")
\def\nip{\par\noindent}
\def\uu{{\vec u}}
\def\vv{{\vec v}}
\def\ww{{\vec w}}
\def\Vec#1{\overrightarrow{#1}}
\def\VEC#1{{\overrightarrow{(#1)}}}
\def\Pr{{\text{Pr}}}
\def\Pru{\Pr_\uu}
\def\Prv{\Pr_\vv}
\def\Prw{\Pr_\ww}
\def\setofxyst#1{\setofst{(x,y)∈\R^2}{#1}}
\def\setofexprt#1{\setofst{#1}{t∈\R}}
\def\setofexpru#1{\setofst{#1}{u∈\R}}
% ____ _ _ _
% / ___|__ _| |__ ___ ___ __ _| | |__ ___
% | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \
% | |__| (_| | |_) | __/ (_| (_| | | | | | (_) |
% \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/
%
{\setlength{\parindent}{0em}
\footnotesize
\par Geometria Analítica
\par PURO-UFF - 2016.1
\par P1 - 8/jun/2016 - Eduardo Ochs
\par Respostas sem justificativas não serão aceitas.
\par Proibido usar quaisquer aparelhos eletrônicos.
% \par Versão: 14/mar/2016
% \par Links importantes:
% \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso)
% \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros)
% \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf}
% \par {\tt eduardoochs@gmail.com} (meu e-mail)
}
\bsk
\bsk
\setlength{\parindent}{0em}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\B (#1 pts){{\bf(#1 pts)}}
% Usage:
% 1) \T(Total: 2.34 pts) Foo
% a) \B(B 0.45 pts) Bar
% (find-angg "LATEX/2015-2-GA-P2.tex")
1) \T(Total: 2.5 pts) Sejam
%
$$\begin{array}{rcl}
r_1 &=& \setofxyst{5x-2y=0}, \\
r_2 &=& \setofexprt{(2,2)+t\VEC{2,-1}}, \\
% r_3 &=& \setofexpru{(2,5)+u\VEC{3,-4}} \\
% r_3 &=& \setofexpru{(5,1)+u\VEC{3,-4}} \\
r_3 &=& \setofexpru{(5+3u,1-4u)}. \\
\end{array}
$$
a) \B(1.5 pts) Determine as coordenadas de $C∈r_1∩r_2$, $D∈r_1∩r_3$ e
$E∈r_2∩r_3$. Obs: se você conseguir encontrar as coordenadas de algum
ponto só pelo gráfico basta provar que ele pertence às retas
adequadas.
b) \B(1.0 pts) Determine a área do triângulo $CDE$.
\bsk
2) \T(Total: 2.5 pts) Sejam:
%
$$\begin{array}{ccl}
C = \setofxyst{(x-3)^2 + (y-4)^2 = 25} \\
C' = \setofxyst{(x-7)^2 + (y-3)^2 = 4} \\
C∩C' = \{I,I'\} \\
\end{array}
$$
a) \B(2.0 pts) Encontre os dois pontos de interseção $I$ e $I'$ dos
dois círculos. Obs: se você conseguir encontrar algum ponto só pelo
gráfico basta provar que ele pertence aos dois círculos.
b) \B(0.5 pts) Determine o ponto médio $M$ de $I$ e $I'$.
\bsk
3) \T(Total: 1.5 pts) Verdadeiro ou falso? Justifique.
Se $\uu$ e $\vv$ são ortogonais e não-nulos e $\ww = a\uu+b\vv$ então
$\ww = \Pru \ww + \Prv \ww$.
% a) \B(1.5 pts)
% b) \B(1.0 pts)
\bsk
4) \T(Total: 1.0 pts) Determine a distância entre as retas com
equações $y=1-\frac x 3$ e $y=2 - \frac x 3$.
\bsk
\def\sen{\operatorname{sen}}
\def\ang{\operatorname{ang}}
5) \T(Total: 2.5 pts) Sejam $A=(2,5)$, $B=(1,3)$, $C=(2,3)$, $D=(2,1)$,
%
$$r=\setofxyst{x+y=3}.$$
a) \B(0.5 pts) Calcule $\cos(A \hat B C)$.
b) \B(2.0 pts) Encontre uma reta $s$ que passa por $D$ e que faz com
$r$ o mesmo ângulo que $A \hat B C$.
\newpage
% ____ _ _ __
% | _ \ ___ __| |_ __ __ _| |_ / /_
% | | | |/ _ \/ _` | '_ \ / _` | __| '_ \
% | |_| | __/ (_| | | | | (_| | |_| (_) |
% |____/ \___|\__,_|_| |_|\__,_|\__|\___/
%
\catcode`\^^J=10
\directlua{dednat6dir = "dednat6/"}
\directlua{dofile(dednat6dir.."dednat6.lua")}
\directlua{texfile(tex.jobname)}
\directlua{verbose()}
%\directlua{output(preamble1)}
%\def\expr#1{\directlua{output(tostring(#1))}}
%\def\eval#1{\directlua{#1}}
%\def\pu{\directlua{pu()}}
\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
% (find-dn6 "picture.lua" "V")
%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
%L V.__div = function (v, k) return v*(1/k) end
%L V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards
%L V.__index.mid = function (A, B) return A+(B-A)*0.5 end -- midpoint
\def\e{\expr}
% _ _ _
% | |_(_) | __ ____
% | __| | |/ /|_ /
% | |_| | < / /
% \__|_|_|\_\/___|
%
% \mygrid and \myaxes
% (find-es "tikz" "mygrid")
\tikzset{mycurve/.style=very thick}
\tikzset{axis/.style=semithick}
\tikzset{tick/.style=semithick}
\tikzset{grid/.style=gray!20,very thin}
\tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}}
\tikzset{opdot/.style={anydot, draw=black,fill=white}}
\tikzset{cldot/.style={anydot, draw=black,fill=black}}
%
\def\mygrid(#1,#2) (#3,#4){
\clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4);
\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2);
\draw[axis] (-10,0) -- (10,0);
\draw[axis] (0,-10) -- (0,10);
\foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2);
\foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y);
}
\def\myaxes(#1,#2) (#3,#4){
\clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4);
%\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2);
\draw[axis] (-20,0) -- (20,0);
\draw[axis] (0,-20) -- (0,20);
\foreach \x in {-20,...,20} \draw[tick] (\x,-0.2) -- (\x,0.2);
\foreach \y in {-20,...,20} \draw[tick] (-0.2,\y) -- (0.2,\y);
}
% Grid color
\tikzset{grid/.style=gray!50,very thin}
\def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}}
\def\mydraw #1;{\draw [mycurve] \expr{#1};}
\def\mydot #1;{\node [cldot] at \expr{#1} [] {};}
\def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};}
\def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};}
\def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};}
\def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};}
% ____ _ _ _
% / ___| __ _| |__ __ _ _ __(_) |_ ___
% | | _ / _` | '_ \ / _` | '__| | __/ _ \
% | |_| | (_| | |_) | (_| | | | | || (_) |
% \____|\__,_|_.__/ \__,_|_| |_|\__\___/
%
\def\Area{\operatorname{Area}}
Mini-gabarito:
\bsk
1a)
%L r1 = Line.new(v(0, 0), v(2, 5), -0.2, 1.2)
%L r2 = Line.new(v(2, 2), v(2, -1), -0.2, 1.2)
%L r3 = Line.new(v(5, 1), v(3, -4), -0.2, 1.2)
%L C = v(1, 2.5)
%L D = v(2, 5)
%L E = v(5.6, 0.2)
\pu
$\tikzp{[scale=0.5,auto]
\myaxes (-2,-2) (8,6);
\myseg r1:t(-0.2) r1:t(1.2); \mylabel r1:t(0.75) 180 r_1;
\myseg r2:t(-1) r2:t(3); \mylabel r2:t(0.5) 270 r_2;
\myseg r3:t(-1.2) r3:t(0.5); \mylabel r3:t(-0.5) 0 r_3;
% \myldot C 0 C;
\myldot C 270 C;
\myldot D 0 D;
\myldot E 45 E;
% \mypgrid 3;
}
\quad
\begin{tabular}{l}
Se $C=(1,2.5)$ então \\
$C ∈ r_1$ porque $5·1 - 2·2.5=0$, \\
$C ∈ r_2$ porque $C = (2,2) + (-0.5)\VEC{2,-1}$, \\
portanto $C∈r_1∩r_2$. \\[5pt]
Se $D=(2,5)$ então \\
$D ∈ r_1$ porque $5·2 - 2·5=0$, \\
$D ∈ r_3$ porque $D = (5+3·0, 1-4·0)$, \\
portanto $C∈r_1∩r_3$. \\
\\
\\
\end{tabular}
$
Se $E = (x,y) ∈ r_2∈r_3$ então
$E = (2+2t, 2-t) = (5+3u, 1-4u)$
$2+2t = 5+3u$
$2-t = 1-4u$
$2-1+4u = t$
$t=1+4u$
$2+2(1+4u) = 5+3u$
$2+2-5 + 8u-3u = 0$
$5u = 1$
$u = \frac 1 5$
$t = 1 + 4 \frac 1 5 = \frac 9 5$
$E = (x,y) = (2+2 \frac 9 5, 2 - \frac 9 5) = (5+3 \frac 1 5, 1-4 \frac 1 5) = (\frac {28} 5, \frac 1 5) = (5.6, 0.2)$
\msk
1b) $\Vec{CD} = \VEC{1, 2.5}$, $\Vec{CE} = \VEC{4.6, -2.3}$, $[\Vec{CD}, \Vec{CE}] = \psm{1 & 2.5 \\ 4.6 & -2.3}$
$|[\Vec{CD}, \Vec{CE}]| = \left|\sm{1 & 2.5 \\ 4.6 & -2.3}\right| = -2.3 - 4.6 · 2.5 = -2.3 - 11.5 = -13.8$
$\Area(CDE) = 13.8/2 = 6.9$
\bsk
\newpage
2)
%L C0 = v(3,4); R = 5
%L CC0 = v(7,3); RR = 2
%L C = Ellipse.newcircle(C0, R)
%L CC = Ellipse.newcircle(CC0, RR)
%L I = v(7,1)
%L uu = CC0 - C0
%L vv = I - C0
%L M = C0 + uu:proj(vv)
%L II = I:tow(M, 2)
\pu
$\tikzp{[scale=0.5,auto]
\myaxes (-2,-1) (10,9);
\mydraw C:draw();
\mydraw CC:draw();
\myseg C0 CC0;
\myldot C0 90 C_0;
\myldot CC0 90 C'_0;
\myseg I II;
\myldot I 270 I;
\myldot II 45 I';
\myldot M 0 \phantom{i}M;
}
$
Seja $I = (7,1)$. Então
$I ∈ C$ porque $(7-3)^2 + (1-4)^2 = 25$ e
$I ∈ C'$ porque $(7-7)^2 + (1-3)^2 = 4$.
Sejam $\uu = \Vec{C_0 C'_0}$, $\vv = \Vec{C_0 I}$, $\ww = \Pru \vv$,
$M = C_0+\ww$, $I' = M + \Vec{IM}$.
Então $\uu = \VEC{4,-1}$, $\vv = \VEC{4,-3}$,
$\ww = \frac {\VEC{4,-1}·\VEC{4,-3}} {\VEC{4,-1}·\VEC{4,-1}}
\VEC{4,-1} = \frac{19}{17} \VEC{4,-1} = \VEC{\frac{76}{17},-\frac{19}{17}}$,
$M = (3,4) + \VEC{\frac{76}{17},-\frac{19}{17}} =
(\frac{51}{17},\frac{68}{17}) + \VEC{\frac{76}{17},-\frac{19}{17}} =
(\frac{127}{17},\frac{49}{17})$
$\Vec{IM} = (\frac{127}{17},\frac{49}{17}) - (7,1) =
(\frac{127}{17},\frac{49}{17}) - (\frac{119}{17},\frac{17}{17}) =
\VEC{\frac{8}{17},\frac{32}{17}}$
$I' = (\frac{127}{17},\frac{49}{17}) +
\VEC{\frac{8}{17},\frac{32}{17}} = (\frac{135}{17},\frac{81}{17})$
\bsk
\bsk
3) $\Pru\ww = \Pru(a\uu + b\vv) =$
$ \frac{\uu·(a\uu + b\vv)}{\uu·\uu} \uu
= \frac{\uu·(a\uu) + \uu·(b\vv)}{\uu·\uu} \uu
= \frac{a(\uu·\uu) + b(\uu·\vv)}{\uu·\uu} \uu
= \frac{a(\uu·\uu) + b·0}{\uu·\uu} \uu
= \frac{a(\uu·\uu)}{\uu·\uu} \uu
= a \uu
$
$\Prv\ww = \Prv(a\uu + b\vv) =$
$ \frac{\vv·(a\uu + b\vv)}{\vv·\vv} \vv
= \frac{\vv·(a\uu) + \vv·(b\vv)}{\vv·\vv} \vv
= \frac{a(\vv·\uu) + b(\vv·\vv)}{\vv·\vv} \vv
= \frac{a·0 + b(\vv·\vv)}{\vv·\vv} \vv
= \frac{b(\vv·\vv)}{\vv·\vv} \vv
= b \vv
$
$\Pru\ww + \Prv\ww = a \uu + b \vv= \ww$
\bsk
\bsk
4)
%L vv = v(1, -1/3)
%L A = v(0, 1); r = Line.new(A, vv, -0.2, 1.2)
%L B = v(0, 2); s = Line.new(B, vv, -0.2, 2.2)
%L C = B + vv:proj(A - B)
\pu
%
$\tikzp{[scale=0.5,auto]
\myaxes (-1,-1) (7,3);
\myseg r:t(-0.5) r:t(3.5);
\myseg s:t(-0.5) s:t(6.5);
\myseg A C;
\myldot A 225 A;
\myldot B 135 B;
\myldot C 45 C;
\mylabel r:t(2.5) 270 r;
\mylabel s:t(3.5) 90 s;
% \mydraw s:draw();
}
$
Sejam:
$r = \setofxyst{y = 1-\frac x 3}$, $A = (0,1)$,
$s = \setofxyst{y = 2-\frac x 3}$, $B = (0,2)$.
Então $d(r,s) = d(A,s) = \frac{d(A,B)}{1 + (-1/3)^2} = \frac 1 {10/9} = \frac{9}{10}$.
\newpage
5)
%L A = v(2, 5); B = v(1, 3); C = v(2, 3); D = v(2, 1)
%L r = Line.new(v(0,3), v(1,-1), 0, 3)
%L CC = v(3, 0); AA = v(5, 2)
\pu
%
$\tikzp{[scale=0.5,auto]
\myaxes (-1,-1) (6,6);
\myseg r:t(-0.5) r:t(3.5);
\myseg A B;
\myseg B C;
\myldot A 90 A;
\myldot B 90 B;
\myldot C 45 C;
%
\myseg AA D;
\myseg D CC;
\myldot AA 90 A';
\myldot D 90 D;
\myldot CC 45 C';
% \mydraw s:draw();
}
$
% a) \B(0.5 pts) Calcule $\cos(A \hat B C)$.
% b) \B(2.0 pts) Encontre uma reta $s$ que passa por $D$ e que faz com
% $r$ o mesmo ângulo que $A \hat B C$.
5a) $\cos(A \hat B C)
= \frac {\Vec{BA}·\Vec{BC}} {||\Vec{BA}|| \, ||\Vec{BC}||}
= \frac 1 {\sqrt{5}}$
5b) $\VEC{1,-1} + 2\VEC{1,1} = \VEC{3,1}$
$s = \setofexprt{(2,1) + t\VEC{3,1}}$
\end{document}
--[[
* (eepitch-lua51)
* (eepitch-kill)
* (eepitch-lua51)
dofile "edrxtikz.lua"
vv = v(1, -1/3)
A = v(0, 1); r = Line.new(A, vv, -0.2, 1.2)
B = v(0, 2); s = Line.new(B, vv, -0.2, 2.2)
C = B + vv:proj(A - B)
= A
= B
= r
= s
= C
= r:t(0)
V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards
C0 = v(3,4); R = 5
CC0 = v(7,3); RR = 2
C = Ellipse.newcircle(C0, R)
CC = Ellipse.newcircle(CC0, RR)
I = v(7,1)
uu = CC0 - C0
vv = I - C0
ww = uu:proj(vv)
M = C0 + ww
IM = M - I
II = M + IM
= ww * 17
= M * 17
= IM * 17
= II * 17
II = I:tow(M, 2)
= uu
r1 = Line.new(v(0, 0), v(2, 5), -0.2, 1.2)
r2 = Line.new(v(2, 2), v(2, -1), -0.2, 1.2)
r3 = Line.new(v(5, 1), v(3, -4), -0.2, 1.2)
= r1:t(0)
= r1:t(1)
= r2:t(0)
= r2:t(1)
= r3:t(0)
= r3:t(1)
= r
= r:draw()
= r:proj(v(0, 1))
= r:proj(v(-2, 4))
= r:sym(v(0, 1))
= r:sym(v(-2, 4))
--]]
% Local Variables:
% coding: utf-8-unix
% End: