|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2016-2-GA-P1.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-2-GA-P1.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-2-GA-P1.pdf"))
% (defun e () (interactive) (find-LATEX "2016-2-GA-P1.tex"))
% (defun u () (interactive) (find-latex-upload-links "2016-2-GA-P1"))
% (find-xpdfpage "~/LATEX/2016-2-GA-P1.pdf")
% (find-xdvipage "~/LATEX/2016-2-GA-P1.dvi")
% (find-sh0 "cp -v ~/LATEX/2016-2-GA-P1.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2016-2-GA-P1.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2016-2-GA-P1.pdf
% file:///tmp/2016-2-GA-P1.pdf
% file:///tmp/pen/2016-2-GA-P1.pdf
% http://angg.twu.net/LATEX/2016-2-GA-P1.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage{color} % (find-LATEX "edrx15.sty" "colors")
\usepackage{colorweb} % (find-es "tex" "colorweb")
\usepackage{tikz}
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\begin{document}
\catcode`\^^J=10
\directlua{dednat6dir = "dednat6/"}
\directlua{dofile(dednat6dir.."dednat6.lua")}
\directlua{texfile(tex.jobname)}
\directlua{verbose()}
%\directlua{output(preamble1)}
\def\expr#1{\directlua{output(tostring(#1))}}
\def\eval#1{\directlua{#1}}
\def\pu{\directlua{pu()}}
\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
\directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua")
%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
\def\V(#1){\VEC{#1}}
% ____ _ _ _
% / ___|__ _| |__ ___ ___ __ _| | |__ ___
% | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \
% | |__| (_| | |_) | __/ (_| (_| | | | | | (_) |
% \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/
%
{\setlength{\parindent}{0em}
\footnotesize
\par Geometria Analítica
\par PURO-UFF - 2016.2
\par P1 - 16/nov/2016 - Eduardo Ochs
\par Respostas sem justificativas não serão aceitas.
\par Proibido usar quaisquer aparelhos eletrônicos.
% \par Versão: 14/mar/2016
% \par Links importantes:
% \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso)
% \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros)
% \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf}
% \par {\tt eduardoochs@gmail.com} (meu e-mail)
}
\bsk
\bsk
\setlength{\parindent}{0em}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\B (#1 pts){{\bf(#1 pts)}}
% Usage:
% 1) \T(Total: 2.34 pts) Foo
% a) \B(0.45 pts) Bar
% (find-angg "LATEX/2015-2-GA-P2.tex")
1) \T(Total: 1.0 pts) Sejam
%
$$\begin{array}{rcl}
r &=& \setofst {(1,2)+t\V(-1,2))} {t∈\R}, \\
s &=& \setofst {(0,4)+u\V(2,-4))} {u∈\R}. \\
\end{array}
$$
a) \B(0.2 pts) Represente $r$ e $s$ graficamente.
b) \B(0.8 pts) Escolha dois pontos diferentes de $r=s$ e dê as
coordenadas e os valores de $t$ e $u$ associados a cada um.
\bsk
\bsk
2) \T(Total: 2.0 pts) Sejam
%
$$\begin{array}{rcl}
r &=& \setofst {(1,2)+t\V(3,4)} {t∈\R}, \\
s_a &=& \setofxyst {y=5+ax}. \\
\end{array}
$$
a) \B(1.0 pts) Encontre o valor de $a$ que faz com que $r$ e $s_a$ sejam
ortogonais.
b) \B(1.0 pts) Calcule $P∈r∩s_a$, onde o $a$ é o do item anterior.
Represente tudo graficamente.
\bsk
\bsk
3) \T(Total: 2.0 pts) Verdadeiro ou falso? Justifique.
a) \B(1.0 pts) $\Pr_{2\uu} (\ww) = 2(\Pr_{\uu} \ww)$
b) \B(1.0 pts) $\Pr_{\uu} (3\ww) = 3(\Pr_{\uu} \ww)$
\bsk
\bsk
4) \T(Total: 3.0 pts) Sejam
%
$$\begin{array}{rcl}
r &=& \setofxyst{y=1+\frac34 x}, \\
s &=& \setofexprt{(0,1)+t\VEC{2,1}}. \\
\end{array}
$$
a) \B(0.3 pts) Calcule $d((0,3),r)$.
b) \B(1.2 pts) Encontre os dois pontos $P_1,P_2∈s$ que estão a distância 1 de $r$.
c) \B(1.5 pts) Encontre as duas retas, $r'$ e $r''$, que são paralelas
a $r$ e tais que $d(r,r') = d(r,r'') = 1$.
\bsk
\bsk
5) \T(Total: 2.0 pts) Sejam $C$ o círculo de com $C_0=(0,5)$ e $R=5$,
e $C'$ o círculo de com $C'_0=(1,0)$ e $R'=1$.
a) \B(0.2 pts) Obtenha as equações dos dois círculos.
b) \B(0.2 pts) Subtraia as duas equações para obter a equação de uma
reta $r$. Defina $r$ formalmente (como conjunto).
c) \B(1.0 pts) Encontre as coordenadas dos dois pontos $\{I,I'\}=C
\cap C' = C \cap r = C' \cap r$.
d) \B(0.6 pts) Verifique que os seus $I$ e $I'$ pertencem a $C$ e
$C'$.
\newpage
{\bf Mini-gabarito:}
{\footnotesize
(Complementa o que foi discutido em sala em 21/nov/2016:
\par \url{http://angg.twu.net/2016.2-GA/20161121_GA1.jpg}
\par \url{http://angg.twu.net/2016.2-GA/20161121_GA2.jpg})
}
\msk
2a) $a=-\frac34$
2b) $t = \frac{9}{25} = 0.36$, $(x,y) = (\frac{52}{25}, \frac{86}{25}) = (2.08, 3.44)$
\msk
4a) $d((0,3),r) = \frac 8 5$
4b) $P_1 = (-5,-\frac32)$, $P_1 = (5,\frac72)$
4c) $r': y = \frac34 x + \frac94$, $r'': y = \frac34 x - \frac14$
\msk
5c) $I=(0,0)$, $I'=(\frac{25}{13}, \frac{5}{13})$
\bsk
\bsk
\bsk
{\footnotesize
\par Links importantes:
\par \url{http://angg.twu.net/2016.2-GA.html} (página do curso)
\par \url{http://angg.twu.net/2016.2-GA/2016.2-GA.pdf} (quadros)
\par \url{http://angg.twu.net/LATEX/2016-2-GA-algebra.pdf} (material extra)
\par \url{http://angg.twu.net/LATEX/2016-2-GA-P1.pdf} (esta prova)
\par {\tt eduardoochs@gmail.com} (meu e-mail)
}
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-anchor-format: "«%s»"
% End: