Classical logic:

Idea:

0 means "false"

1 means "true"

Operations:

We will use a more compact form.

If
$$P = 1$$
 and $Q = 0$, then

So:

P	Q	P&Q	$P \vee Q$	$P \to Q$	$P \leftrightarrow Q$	P	$\neg P$
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	0	0		
1	1	1	1	1	1		

Constants:

$$T = 1$$

$$\perp = 0$$

Our first non-classical logic:

Idea:

00 means "false"

11 means "true"

01 is something intermediate between true and false

Operations:

P	Q	P&Q	$P \lor Q$	$P \to Q$	$P \leftrightarrow Q$	P	$\neg P$
00	00	00	00	11	11	00	11
00	01	00	01	11	00	01	00
00	11	00	11	11	00	11	00
01	00	00	01	00	00		
01	01	01	01	11	11		
01	11	01	11	11	01		
11	00	00	11	00	00		
11	01	01	11	01	01		
11	11	11	11	11	11		

Constants:

 $\top = 11$

 $\perp = 00$