|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-1-C2-P1.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-1-C2-P1.tex" :end))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-1-C2-P1.pdf"))
% (defun e () (interactive) (find-LATEX "2017-1-C2-P1.tex"))
% (defun u () (interactive) (find-latex-upload-links "2017-1-C2-P1"))
% (find-xpdfpage "~/LATEX/2017-1-C2-P1.pdf")
% (find-sh0 "cp -v ~/LATEX/2017-1-C2-P1.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2017-1-C2-P1.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2017-1-C2-P1.pdf
% file:///tmp/2017-1-C2-P1.pdf
% file:///tmp/pen/2017-1-C2-P1.pdf
% http://angg.twu.net/LATEX/2017-1-C2-P1.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage{color} % (find-LATEX "edrx15.sty" "colors")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\begin{document}
\catcode`\^^J=10
\directlua{dednat6dir = "dednat6/"}
\directlua{dofile(dednat6dir.."dednat6.lua")}
\directlua{texfile(tex.jobname)}
\directlua{verbose()}
%\directlua{output(preamble1)}
\def\expr#1{\directlua{output(tostring(#1))}}
\def\eval#1{\directlua{#1}}
\def\pu{\directlua{pu()}}
\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
\directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua")
%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
{\setlength{\parindent}{0em}
\footnotesize
\par Cálculo 2
\par PURO-UFF - 2017.1
\par P1 - 17/jul/2017 - Eduardo Ochs
\par Respostas sem justificativas não serão aceitas.
\par Proibido usar quaisquer aparelhos eletrônicos.
}
\bsk
\bsk
\setlength{\parindent}{0em}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\B (#1 pts){{\bf(#1 pts)}}
% Usage:
% 1) \T(Total: 2.34 pts) Foo
% a) \B(0.45 pts) Bar
\bsk
\bsk
% (c2q)
1) \T(Total: 1.0 pts) Demonstre que $\ddx \arctan x = \frac {1}
{x^2+1}$. Você vai precisar do truque pra derivar funções inversas ---
se $f(g(x))=x$ então $\ddx(f(g(x))) = \ddx x = 1$ --- e de um outro
truque extra... dica: na demonstração de que $\ddx \arcsen x = \frac
{1} {\sqrt{1-x^2}}$ o truque extra é $\cos^2 x + \sen^2 x = 1$.
\bsk
2) \T(Total: 1.0 pts) Sejam $f(x) = x^{-4}$ e $F(x) =
\frac{x^{-3}}{-3}$.
a) \B(0.1 pts) Mostre que a área $\Intx{-1}{1}{f(x)}$ é positiva.
b) \B(0.2 pts) Calcule $\Difx{-1}{1}{F(x)}$.
c) \B(0.3 pts) Calcule $G(ε) = \Intx{-1}{-ε}{f(x)} + \Intx{ε}{1}{f(x)}$. Obs: $ε>0$.
d) \B(0.4 pts) Calcule $\lim_{ε→0^+} G(ε)$.
\bsk
3) \T(Total: 2.0 pts) Calcule $$\Intx{-1}{2}{\frac{1}{3+|x|}}.$$
4) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^2}{x^2 + 4x - 5}}.$$
5) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x}{1+x^2}}.$$
% 6) \T(Total: 1.0 pts) Calcule $$\intx {(2x+3) \sen (4x+5)}.$$
6) \T(Total: 2.0 pts) Calcule $$\intx {(\cos x)^4}.$$
\bsk
\bsk
Dicas:
$\bsm{s=\senθ \\ \sqrt{1-s^2}=\cosθ \\ ds=\cosθ\,dθ \\ θ=\arcsen s}$,
$\bsm{t=\tanθ \\ \sqrt{1+t^2}=\secθ=z \\ dt= z^2\,dθ \\ θ=\arctan t}$,
$\bsm{z=\secθ \\ \sqrt{z^2-1}=\tanθ=t \\ dz= zt\,dθ \\ θ=\arcsec z}$,
$E = e^{iθ} = \cosθ+i\senθ = c + is$,
$c=(E+E^{-1})/2$,
$s=(E-E^{-1})/2i$.
\newpage
{\bf Gabarito parcial:}
% (find-es "ipython" "2017.1-C2-P1")
1) $\begin{array}[t]{l}
\ddx \arctan(\tan x) = \ddx x = 1 \\
\ddx \arctan(\tan x) = \arctan'(\tan x) \tan' x \\
\arctan'(\tan x) = \frac 1 {\tan' x} \\
\ddth \tanθ = \ddth \frac sc = \frac{s'c-sc'}{c^2} = \frac{c^2+s^2}{c^2} = \frac{c^2}{c^2} + \frac{s^2}{c^2} = 1 + t^2 \\
\ddx \tan x = (\tan x)^2 + 1 \\
\arctan'(\tan x) = \frac 1 {(\tan x)^2 + 1} \\
\arctan'(t) = \frac 1 {t^2 + 1} \\
\arctan'(x) = \frac 1 {x^2 + 1} \\
\end{array}
$
\bsk
2a) (um desenho)
2b) $\Difx{-1}{1}{F(x)} = F(1)-F(-1)
= \frac{1^{-3}}{-3} - \frac{(-1)^{-3}}{-3}
= \frac{1}{-3} - \frac{-1}{-3}
= \frac{2}{-3}
= - \frac{2}{3}
$
2c) $\begin{array}[t]{rcl}
G(ε) &=& \Difx{-1}{-ε}{F(x)} + \Difx{ε}{1}{F(x)} \\
&=& F(-ε)-F(-1) + F(1)-F(ε) \\
&=& \frac{(-ε)^{-3}}{-3} - \frac{(-1)^{-3}}{-3} + \frac{1^{-3}}{-3} - \frac{ε^{-3}}{-3} \\
&=& \frac{(-ε)^{-3} + 1 + 1 - ε^{-3}}{-3} \\
&=& \frac{2 - 2(ε^{-3})}{-3} \\
&=& \frac{2(ε^{-3}) - 2}{3} \\
&=& \frac{2}{3}(ε^{-3} - 1) \\
\end{array}
$
2d) $\lim_{ε→0^+} G(ε) = \frac{2}{3}(\lim_{ε→0^+} ε^{-3} - \lim_{ε→0^+} 1) = \frac23(+∞-1) = +∞$
\bsk
\def\mycases#1#2{\begin{cases}
#1 & \text{quando $x<0$} \\
#2 & \text{quando $x≥0$} \\
\end{cases}
}
3) Seja $f(x) = \frac{1}{3+|x|}$. Então $f$ é contínua e:
%
$$f(x) = \mycases{\frac{1}{3+|x|}}{\frac{1}{3+|x|}}
= \mycases{\frac{1}{3-x}}{\frac{1}{3+x}}
= \mycases{-\frac{1}{x-3}}{\frac{1}{x+3}}
$$
$$\begin{array}{rcl}
\Intx{-1}{2}{f(x)} &=& \Intx{-1}{0}{-\frac{1}{x-3}} + \Intx{0}{2}{\frac{1}{x+3}} \\
&=& \Difx{-1}{0}{(-\ln|x-3|)} + \Difx{0}{2}{\ln|x+3|} \\
&=& (-\ln|-1-3|) - (-\ln|0-3|) + (-\ln|2+3|) - (-\ln|0+3|) \\
&=& (-\ln 4) - (-\ln 3) + (- \ln 5) - (-\ln 3) \\
&=& 2\ln 3 - \ln 4 - \ln 5 \\
\end{array}
$$
\msk
4) $\intx {\frac{x^2}{x^2 + 4x - 5}} =
\intx {1 + \frac{1}{6}\frac{1}{x-1} - \frac{25}{6}\frac{1}{x+5} } =
x + \frac{1}{6}\ln|x-1| - \frac{25}{6}\ln|x+5|
$
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-anchor-format: "«%s»"
% End: