|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-1-C2-P2.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-1-C2-P2.tex" :end))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-1-C2-P2.pdf"))
% (defun e () (interactive) (find-LATEX "2017-1-C2-P2.tex"))
% (defun u () (interactive) (find-latex-upload-links "2017-1-C2-P2"))
% (find-xpdfpage "~/LATEX/2017-1-C2-P2.pdf")
% (find-sh0 "cp -v ~/LATEX/2017-1-C2-P2.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2017-1-C2-P2.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2017-1-C2-P2.pdf
% file:///tmp/2017-1-C2-P2.pdf
% file:///tmp/pen/2017-1-C2-P2.pdf
% http://angg.twu.net/LATEX/2017-1-C2-P2.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage{color} % (find-LATEX "edrx15.sty" "colors")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\begin{document}
\catcode`\^^J=10
\directlua{dednat6dir = "dednat6/"}
\directlua{dofile(dednat6dir.."dednat6.lua")}
\directlua{texfile(tex.jobname)}
\directlua{verbose()}
%\directlua{output(preamble1)}
\def\expr#1{\directlua{output(tostring(#1))}}
\def\eval#1{\directlua{#1}}
\def\pu{\directlua{pu()}}
\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua")
\directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua")
%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end
{\setlength{\parindent}{0em}
\footnotesize
\par Cálculo 2
\par PURO-UFF - 2017.1
\par P2 - 18/jul/2017 - Eduardo Ochs
\par Respostas sem justificativas não serão aceitas.
\par Proibido usar quaisquer aparelhos eletrônicos.
}
\bsk
\bsk
\setlength{\parindent}{0em}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\B (#1 pts){{\bf(#1 pts)}}
% Usage:
% 1) \T(Total: 2.34 pts) Foo
% a) \B(0.45 pts) Bar
% (find-angg "LATEX/2015-2-GA-P2.tex")
1) \T(Total: 2.0 pts) Seja $(*)$ a seguinte EDO: $f''-5f'+6f=0$.
a) \B(0.5 pts) Expresse $(*)$ na forma $(D-a)(D-b)f=0$.
b) \B(0.5 pts) Encontre as soluções básicas de $(*)$.
c) \B(0.2 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=1$, $f'(0)=0$.
d) \B(0.3 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=0$, $f'(0)=1$.
e) \B(0.5 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=2$, $f'(0)=3$.
\bsk
\bsk
2) \T(Total: 3.5 pts) Seja $(**)$ a seguinte EDO: $f''+4f'+13f=0$.
a) \B(1.0 pts) Expresse $(**)$ na forma $(D-a)(D-b)f=0$.
b) \B(1.0 pts) Encontre as soluções básicas de $(**)$.
c) \B(1.0 pts) Encontre as soluções {\sl reais} de $(**)$.
d) \B(0.5 pts) Teste as soluções que você encontrou no item anterior.
\bsk
\bsk
3) \T(Total: 2.5 pts) Seja $(***)$ a seguinte EDO: $\ddx y = x e^{-y}$.
a) \B(1.5 pts) Encontre a solução geral de $(***)$.
b) \B(1.0 pts) Encontre uma solução de $(***)$ que passa pelo ponto $(3,4)$.
\bsk
\bsk
4) \T(Total: 2.0 pts) Seja $(****)$ a seguinte EDO: $-3x^2 dx + (2y+2) dy = 0$.
a) \B(0.5 pts) Verifique que $(****)$ é exata.
b) \B(1.0 pts) Encontre a solução geral de $(****)$.
c) \B(0.5 pts) Encontre uma solução de $(****)$ que passa pelo ponto $(3,4)$.
\newpage
{\bf Gabarito:} (não revisado)
\bsk
% (find-es "ipython" "2017.1-C2-P2" "Questao 1")
1a) $(D-2)(D-3)f = 0$
1b) $f_1 = e^{2x}$, $f_2 = e^{3x}$
1c) $3f_1 - 2f_2$
1d) $-f_1 + f_2$
1e) $3f_1 - f_2$
\bsk
% (find-es "ipython" "2017.1-C2-P2" "Questao 2")
2a) $(D-(-2+3i))(D-(-2-3i))f=0$
2b) $f_1 = e^{(-2+3i)x}$,
$f_2 = e^{(-2-3i)x}$.
2c) $f_3 = \cos(3x)·e^{-2x}$,
$f_4 = \sen(3x)·e^{-2x}$.
2d)
\bsk
% (find-es "ipython" "2017.1-C2-P2" "Questao 3")
3a) $f = \ln(\frac{x^2}{2} + C)$
3b) $f = \ln(\frac{x^2}{2} - \frac92 + e^4)$
\bsk
4a) $G = -3x^2$, $H=2y+2$, $G_y=0=H_x$; $Gdx + Hdy=0$ é exata, e
existe $F$ tal que $F_x = -3x^2$ e $F_y = 2y+2$.
4b) $F(x,y) = -x^3 +y^2 + 2y$ ou
$F(x,y) = -x^3 + y^2 + 2y + 1 = -x^3 + (y+1)^2$;
$F(x,y) = C \quad⇒\quad (y+1)^2 = C+x^3 \quad⇒\quad y = \sqrt{C+x^3}-1$
4c) $4 = \sqrt{C+3^3}-1 \quad⇒\quad \sqrt{C+3^3}=5 \quad⇒\quad
C+3^3=25$
$⇒\quad C=-2 \quad⇒\quad y = \sqrt{-2+x^3}-1$
% f2 = sin(3*x) * exp(-2*x)
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-anchor-format: "«%s»"
% End: