Expressions (and reductions)

)

The usual way to calculate an A notation for calculating the
expression, one step at a time, value of an expression by
with ‘=’s: calculating the values of all
its subexpressions:
2-34+4-5 = 2-3+20
= 6+20 2-3+4-5
~ =~
= 26 6 20
—_——
2.3+4-5 = 6+4-5 26
= 6+20 Each ‘=" in the previous diagram
= 2 corresponds to applying one *
Each ‘=’ corresponds to a ‘ —’

in the reduction diagram below.

A reduction diagram for 2-3+4-5:
(See Hindley/Seldin, pages 14 and 17)

2:-3+4.-5——2-3420

T

6+4-5——>6+20—>26

Note that when we can choose two subexpressions to calculate
the ‘]’ evaluatess the leftmost one, and the ‘—’ evaluates
the rightmost one.

The subexpressions of 2 -3+ 4 - 5:

2 -3 + 4 -5
SN~

—_———— —\——

Exercise:

Do the same as above for these expressions:
a)2-(3+4)+5-6

b)2+3+4

c)2+3+4+5

(Improvise when needed)

2017-1-LA-material May 2, 2017 23:50

Expressions with variables

If a=5and b =2, then: If a =10 and b =1, then:
(e e~ (erl)e L)
) 2 5 2 10 1 10 1
7 3 11 9
21 99

We know — by algebra, which is not for (tiny) children —
that (a+b)-(a —b) =a-a—b-bis true for all a,b € R
We know — without algebra — how to test
“la+b)-(a—b)=a-a—b-b"

for specific values of a and b...

21 21

true

If a =10 and b =1, then:

(a + b)(a —b)=a - a —_b - b
N I N
10 1 10 1 10 0 1 1
———
11 9 100 1
99 99
true

A notation for (simultaneous) substitution:
r:=a+y
(@ +y)-2) | y=biz +(0+2) - (c+2)

Note that ((a+0b)-(a—0))[¢Z5]=(5+2) - (5—2).

2017-1-LA-material May 2, 2017 23:50

Lambda

A named function: g(a) =a-a+4
An unnamed function: la.a-a+ 4
Let h=MXa.a-a+ 4.

Then:
92+3) —————9(5) W2+ 3) ————h(5)
’ |
(M.a-a+4)(2+3) — (Aa.a-a+4)(5)
} !
(a-a+4)a:=2+3]—(a-a+4)[a:=5]
|
(2+3)-(2+3)+4 (2+3)-(2+3)+4
\ \
(24+3)-5+4 (24+3)-5+4
\ \
5-(2+3)+4——>5-5+4 5-(24+3)+4——>5-5+4
25+4 25+4
2l9 2j(9

The usual notation for defining functions is like this:

f+ N - R
n = 24+./n

(name) : (domain) — (codomain)
(variable) — (expression)

It creates named functions
(with domains and codomains).

The usual notation for creating named functions
without specifying their domains and codomains

is just f(n) =2+ /n.
Note that this is:

/ (n) = 2+ym

(name) ((variable)) = (expression)

2017-1-LA-material May 2, 2017 23:50

Functions as their graphs
The graph of

h: {-2,-1,0,1,2} — {0,1,2,3,4}
E — k2

is {(_2’4)7 (_1’ 1)7 (Oa 0)7 (17 1)7 (274)}'

We can think that a function is its graph,

and that a lambda-expression (with domain) reduces to a graph.
Then h = {(-2,4),(—1,1),(0,0),(1,1),(2,4)}

and h(_Q) = {(_Qa 4)’ (_1a 1)’ (07 O)a (1’ 1)7 (Qa 4)}(_2) =4.

Let h:= (\k: {—2,-1,0,1,2}.k?).
We have:

h(—2)

!

(M :{-2,-1,0,1,2}.k%) (Mk:{-2,-1,0,1,2}.k%)(-2)

l l

(_27(_2)2)7 (_2»(_2)2)’
(_17(_1)2)7 (_17(_1)2)y
(0,02), (0,02), (-2) ——— (—2)?
(1,1%), (1,1%),
(2,2%) (2,2%)
(—2,4), (—2,4),
(_lal)v (_1v1)y
(0,0), 0,0), p(-2)— >4
(1,1), (1,1),
(2,4) (2,4)

Note:

the graph of (An : N.n?) has infinite points,

the graph of (An : N.n?) is an infinite set,

the graph of (An : N.n?) can’t be written down explicitly without ‘...’s...

Mathematicians love infinite sets.

Computers hate infinite sets.

For mathematicians a function is its graph

(1 remember Discrete Mathematics!)

For computer scientists a function is is a finite program.
Computer scientists love ‘\’s!

Iove things like this: { (50} } (3) = 30

2017-1-LA-material May 2, 2017 23:50

Types (introduction)

Let:
A={1,2}
B = {30,40}.

If f: A— B, then f is one of these

four functions:

1—30 130 1—40 140
2307 2407 2307 2—40

or, in other notation,

(1,30) (1,30) (1,40) (1,40)
(2,30) [\ (2,40) [\ (2,30) [| (2,40)

which means that:

(1,30) (1,30) (1,40) (1,40)
fe { {(2,30) }{ (2,40) }{ (2.30) }{ (2,40) } }

Let’s use the notation “A — B” for
“the set of all functions from A to B”.
Then (A — B) — (1,30) (1,30) (1,40) (1,40)

en (A — B) = { (2,30) [\ (2,40) J° (2,30) [\ (2,40) }
and f: A— B
means f € (A — B).

In Type Theory and A-calculus “a : A”

is pronounced “a is of type A”, and the meaning

of this is roughly “a € B”.

(We'll see the differences between ‘€’ and ’ (much) later).

Note that:

1.if f: A— Band a: A then f(a): B

2. ifa: Aand b: B then (a,b) : A x B

3.if p: Ax B then 7p: A and 7'p : B, where
‘r’ means ‘first projection’ and

‘7"’ means ‘second projection’;

if p = (2,30) then mp = 2, 7'p = 30.

Ifp: Ax Band g: B— C, then:
(r »p (7" »)

g
~— = ~—
:AxB :B—C :AXB

—— ——
tA :B
—_————
:C
AXC

2017-1-LA-material May 2, 2017 23:50

Typed A-calculus: trees

A={1,2}
B ={3,4)
C = {30, 40}
D = {10,20}
_ [(1,3),(1,4),
Ax B = {(2,3),(2,4)

[(3,30), (3,30), (3,40), (3,40),
B—C= {{ (4,30) }v (4,40) }v{ (4,30 } 7{ (4,40) }}
If we know [the values of] a, b, f
then we know [the value of] (a, f(b)).

If (a,b) = (2,3) and f = { (&.50) }
then (a, f(b)) = (2,30).

(a,b) (2,3)
(a,b) b T (2,3) 37 {(3,30),(4,40)}
—~ 1 ————= app — app
a ONE 2 30 |
pair pair
(a, f(b)) (2,30)
If we know the types of a, b, f
we know the type of (a, f(b)).
If we know the types of p, f
we know the type of (mp, f(7'p)).
If we know the types of p, f
we know the type of (Ap: A x B.(wp, f(7'p))).
(a,b): Ax B
(a,b) : Ax B b:B T f:B—>Capp
-7
a:A f):Cc .
air
(a, f(0)) : Ax C P
p:Ax B
p:AxB @p:B " f:B=C
™ app
A fla'p): C .
pair

(mp, f(7'p)) : Ax C \
(Mp: AX B.(mp, f(7'p))): Ax B— AxC

2017-1-LA-material May 2, 2017 23:50

Types: exercises

Let:
A=1{1,2}
B = {3,4}
C = {30,40}
D = {10,20}

_ J (330),
F={E0
_ [0,
9= { (2,20) }
Note that f: B— C and g: A — D.

a) Evaluate A x B.
b) Evaluate A — D.

c¢) Evaluate (mp, f(7'p)) for each of the four possible values of p: A X B.
d) Evaluate Ap:Ax B.(7p, f(7'p)).

e) Is this true?

(1,
(Ap:Ax B.(mp, f(x'p))) = { EE
(

f) Let p = (2, 3). Evaluate (g(7p), f(7'p)).
g) Check that if p : A x B then (g(mp), f(7'p)) : D x C.
h) Check that

(Ap:AxB.(g(mp), f(7'p))) : Ax B— D x C.

i) Evaluate (Ap:AxB.(g(7p), f(7'p))).

2017-1-LA-material May 2, 2017 23:50

Type inference

Here is another notation for checking types:

A p :AxB. (v p, [(' p))
~—~ ~—~ ~—~ ~—~
:AxB :AxB :B—C :AxXB

—— ——
tA :B
(S ——
:C
AxC
tAXB—AxC

Compare it with:

p:Ax B
p:Ax B m'p: B f:B—>C
mp: A i f@'p): C
(=5, J(p) - A% C .
(Ap: Ax B.(wp, f(7'p))): AxB—= AxC

s

app

pair

Exercise:

Infer the type of each of the terms below (at the right of the :=").
Use the two notations above.

The types of f, g, h, k are shown in the diagram below.

a) (XC)f = ApAxC.(f(7p),7'p)
b) R® = Ag@:BxC.(h(7q))(n'q)
c) gt = A:B.Ae:C.g(b,c)

d) (C—=)k := Xp:C—D.X\e:C.k(pc)

AxC<=—A
(xCO)f <~ !
BxC<——B
Y= |8

D+—C—=D

k — (C—)k

EF+—C—F

2017-1-LA-material May 2, 2017 23:50

Term inference

Exercises:
p:AxC
—_—
DA f:A%Bapp p:AxC ,
: B :C W
:BxC pair
:AxC—>B><C/\
q: BxC
g: BxC B h:B— (C — D)
771_/ app
:C :C%Dapp
: D
:BXC—)D)\
b:B c¢:C i
BxCc P 4.BxcoD
app
: D \
C—D \
B — (C — D)
c:C ¢:C—=D
app
: D k:D—>Eapp
) N
:(C — E)

2017-1-LA-material May 2, 2017 23:50

Term inference: answers

p:AxC
mp: A i f:A—)Bapp p:AxC
f(mp): B w'p: C
(f(mp),7'p): Bx C \
Ap:AXC.(f(mp),n'p) : Ax C — B x C

™
pair

q:BxC

—
qg:BxC mq: B h:B— (C — D)
w'q:C

h(rq): C = D a
h(rq)(w'q) : D
Ag:BxC.h(mq)(n'q) : Bx C — D

pp

A

b:B c¢:C |
(b,e): Bx C pair g:BxC—D
g(b,c): D :
Ae:C.g(b,c): C— D
Ab:B.X\e:C.g(b,c): B— (C — D)

pp

A

A

c:C ¢:C—D
app
pc: D k:D—FE N
k(ec): E
Ae:Clk(pe) : (C — E)
©:C—=D.Xe:Ck(pc) : (C— D) — (C — E)

pp

A

A

2017-1-LA-material May 2, 2017 23:50

w’ app

10

11

Contexts and ‘H’

Suppose that A, B, C' are known, and are sets.
(Jargon: “fix sets A, B, C”.)

Then this
p:AxB,f:B—CF f(n'p): C
——
“context”: a series of term:type
declarations like
var:type
Means:

“In this context the expression expr makes sense, is not error,
and its result is of type type.”

Note that calculating f(#'p) yields error
if we do not know the values of f or p.

What happens if we add contexts to each term : type in a tree?
The two bottom nodes in

p:Ax B ,
p:Ax B m'p: B T f:B—>C
™ app
mp: A fl@'p):C .
pair
(mp, f(n'p)) : Ax C \

(Ap: Ax B.(np, f(7'p))) : Ax B— AxC
would become:
f:B—C,p:Ax Bt (np, f(n'p)): Ax C
f:B—=CkF(M\p:AxB.rp, f(7'p))): Ax B — AxC

After the rule ‘A’ the ‘p’ is no longer needed!

If we add the contexts and omit the types, the tree becomes:

p l_ p ! @ /
pkp pEap " frHf [
pEmp | fipt f(p) pa:pp ™ (D) p:.::)p
fip b (mp, f(7'p)) (mp, f(7'p)) N1
fE wAxB.(7p, f(7'p))) ~ (ApAxB.(7p, f(7'p)))

Notational trick:

below the bar ‘A; 1’ the value of p is no longer needed;

we say that the p is “discharged” (from the list of hypotheses)
and we mark the ‘p’ on the leaves of the tree with ‘[-]!’;

a ‘[]}” on a hypothesis means: “below the bar ‘A;1’ T am

no longer a hypothesis”.

2017-1-LA-material May 2, 2017 23:50

12

Curry-Howard: introduction

We are learning a system called
“the simply-typed A-calculus (with binary products)” —
system A1, for short.

In Al in its fullest form,

its objects are trees of ‘... & term : type’s,

but we saw (evidence) that we can:

e reconstruct the full tree from just the ‘term : type’s,

e write just ‘: type’s (except on the leaves, to get the var names),
e reconstruct the full tree from just the bottom ‘term : type’...

For example, we can reconstruct the whole tree,
with contexts, from:

[p: AxB]!)
- Ax B! : B T : B C
[p .Z] - cf — ¢ app
. t AxC — pair
“AXB = AxC

If we erase the terms and the ‘:’s and leave only the types,
we get something that is strikingly similar to a tree in
Natural Deduction,

[AxB]'
x B B B —C
[AxB]! "
a1 s C app
1xC pair
AxB — AxC A
P&l
[P&Q]! Q Q—R
—- P &El R — F
g
P&R — P&Q ’

which talks about logic.

2017-1-LA-material May 2, 2017 23:50

13

Curry-Howard: Natural Deduction

The tree
[P&Q]*
&E
peQt Q@ ° Q-R .
P ! R -
%0 &I

——=F I
P&R — P&Q

is in NDg_, (or in IPLg_,), the fragment of
Natural Deduction (or intuitionistic predicate logic)
that only has the connectives & and —.

Its rules are:

P Q P&Q P&Q

P [Q!
R P P—>Q
Q—R Q

New rules (for T, L, V):
(not yet — see the whiteboard for 20170418)

2017-1-LA-material May 2, 2017 23:50

Planar Heyting Algebras

We read sections 1-7 of:
http://angg.twu.net/LATEX/2017planar-has.pdf

32
22

_ 21 12
Let B =571 02 -

10 01
00

Exercises:

Calculate and represent in positional notation when possible:

a) Alr:B.l

b) Mlr:B.r

Alr:B.(1 < 1)

Alr:B.(r > 1)
ANr:B.lr <11
Ar:B.ré&12
Alr:B.valid (({ +1,7))
Ar:B.lr leftof 11

Alr:B.1r leftof 12
Alr:B.lr above 11

) Alr:B. ne (Ir)
Alr:B.nw (Ir)

m) 20 — 11

n) 02 — 11

0) 22 — 11

p) 00 — 11

q) Nr:B.~lr

r) Alr:B.—=lr

s) Nr:B.lr = —~lr

~

—

-
coproeas

e

[a—
~—

2017-1-LA-material May 2, 2017 23:50

14

http://angg.twu.net/LATEX/2017planar-has.pdf

15

Algebraic structures
A ring is a 6-uple
(Rv ORa 1Ra +R, R, 'R)
where R,0g, ..., g have the following types,
R is a set,
Or € R,
1r € R,
+r:RXR—R,
—gr : R — R (unary minus),
‘r:R— R,
and where the components obey these equations (Va,b,c € R):
a+0g =0p+a=a, a+b=b+a, a+(b+c)= (a+b)+¢c, a+(—a)=0,
a-lgp=1g-a=a, a-b=b-a, a-(b-¢c)=(a-b)-c,
a-(b+c)=a-b+a-c
A proto-ring is a 6-uple (R,0r,1r,+Rr,—R,R)
that obeys the typing conditions of a ring.
A ring is a proto-ring plus the assurance that it obeys the ring equations.

A proto-Heyting Algebra is a 7-uple
H = (Q7§H7TH7J—H3&H3\/H7*>H)

in which:

) is a set (the “set of truth values”),
<pC Q x Q (partial order),

Ty € Q,

1y e,

&r:QxQ—=0

Vi Qx Q=0

—g: A xQ— 0

Sometimes we add operations ‘- and <> to a (proto-)HA H,
H=(<u, Ty, Ly, &u,Vu,—u,~u,<n)

by defining them as =P := P — L and P + Q := (P — Q)&(Q — P)
(i.e., —gP:=P—y ly
and P <y Q = (P —H Q)&H(Q —H P))

This abuse of language is very common:
R “=7 (Ra OR7 1R7 +R7 R 'R)-

2017-1-LA-material May 2, 2017 23:50

16

Protocategories

A protocategory is a 4-uple
C= (COa HOI’DC, idCa OC)

where

Cy is a set (more precisely a “class”),

Home : Cy x Cy — Sets,

ldc(A) € Homcg (A, A),

(oc)apc : Home(B,C) x Home (A, B) — Home (A4, C).

A categoru is a protocategory plus the assurance that
identities behave as expected and composition is associative.

Sometimes we add an operation ‘;’ to a category,

C = (Cy,Homg, idc, oc, ;¢)

where ;” is the composition in other order: fog = g; f.

2017-1-LA-material May 2, 2017 23:50

