|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017bell.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2017bell.tex"))
% (defun d () (interactive) (find-xpdfpage "~/LATEX/2017bell.pdf"))
% (defun e () (interactive) (find-LATEX "2017bell.tex"))
% (defun u () (interactive) (find-latex-upload-links "2017bell"))
% (find-xpdfpage "~/LATEX/2017bell.pdf")
% (find-sh0 "cp -v ~/LATEX/2017bell.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2017bell.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2017bell.pdf
% file:///tmp/2017bell.pdf
% file:///tmp/pen/2017bell.pdf
% http://angg.twu.net/LATEX/2017bell.pdf
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
%\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage{color} % (find-LATEX "edrx15.sty" "colors")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-angg "LATEX/edrx15.sty")
\input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\begin{document}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% (find-books "__cats/__cats.el" "bell")
% (find-belltpage (+ 14 162) "truth-set")
% (find-belltpage (+ 14 163) "modality")
% (find-belltpage (+ 14 164) "universal closure operation")
$(tr_0) \qquad ⊢T⊆Ω$
$(tr_1) \qquad ⊢⊤∈T$
$(tr_2) \qquad α⊢β \qquad α∈T⊢β∈T$
$(tr_3) \qquad (α∈T)∈T⊢α∈T$
\msk
$(tr'_1) \qquad ⊢⊤^*$
$(tr'_2) \qquad α⊢β \qquad α^*⊢β^*$
$(tr'_3) \qquad α^{**}⊢α^*$
$(tr'_4) \qquad α⊢α^*$
\msk
%:
%: ----------- ----------- -----------
%: α⊢β=α{∧}β α^*⊢β=α^*{∧}β β⊢α=α{∧}β
%: ----------------- ----------------- -----------------
%: α⊢β^*=(α{∧}β)^* α^*⊢β^*=(α^*{∧}β)^* β⊢α^*=(α{∧}β)^*
%: ----------------- ----------------- -----------------
%: α⊢β^*{→}(α{∧}β)^* α^*⊢β^*{→}(α^*{∧}β)^* β⊢α^*{→}(α{∧}β)^*
%: ----------------- ----------------- -----------------
%: α,β^*⊢(α{∧}β)^* α^*,β^*⊢(α^*{∧}β)^* α^*,β⊢(α{∧}β)^*
%: ----------------- ----------------- -----------------
%: α{∧}β^*⊢(α{∧}β)^* α^*{∧}β^*⊢(α^*{∧}β)^* α^*{∧}β⊢(α{∧}β)^*
%: ----------------- ----------------- -----------------
%: (α{∧}β^*)^*⊢(α{∧}β)^{**} (α^*{∧}β^*)^*⊢(α^*{∧}β)^{**} (α^*{∧}β)^*⊢(α{∧}β)^{**}
%: ----------------- ----------------- -----------------
%: (α{∧}β^*)^*⊢(α{∧}β)^* (α^*{∧}β^*)^*⊢(α^*{∧}β)^* (α^*{∧}β)^*⊢(α{∧}β)^*
%:
%: ^foo1 ^foo2 ^foo3
%:
%:
%: --------- ---------
%: α{∧}β⊢α α{∧}β⊢β
%: ======================== ======================== --------------- ----------
%: α^*{∧}β^*⊢(α^*{∧}β)^* (α^*{∧}β)^*⊢(α{∧}β)^* (α{∧}β)^*⊢α^* (α{∧}β)^*⊢β^*
%: ---------------------------------------------------- --------------------------------
%: α^*{∧}β^*⊢(α{∧}β)^* (α{∧}β)^*⊢α^*{∧}β^*
%: ------------------------------------------------------------------------------------
%: ⊢α^*{∧}β^*=(α{∧}β)^*
%:
%: ^foo4
%:
%: =======================
%: ⊢α^*{∧}β^*=(α{∧}β)^*
%: -----------------------------
%: ⊢(α^*{∧}β^*)^*=(α{∧}β)^{**}
%: -----------------------------
%: ⊢(α^*{∧}β^*)^*=(α{∧}β)^*
%: ======================= -----------------------------
%: ⊢α^*{∧}β^*=(α{∧}β)^* ⊢(α{∧}β)^*=(α^*{∧}β^*)^*
%: -------------------------------------------------------
%: ⊢α^*{∧}β^*=(α{∧}β)^*=(α^*{∧}β^*)^*
%:
%: ^foo5
%:
%: ------------
%: α,α{→}β⊢β
%: ------------
%: α∧(α{→}β)⊢β
%: --------------------
%: (α∧(α{→}β))^*⊢β^*
%: --------------------
%: α^*∧(α{→}β)^*⊢β^*
%: --------------------
%: α^*,(α{→}β)^*⊢β^*
%: ------------------ --------------------
%: α{→}β⊢(α{→}β)^* (α{→}β)^*⊢α^*{→}β^*
%: ----------------------------------------------
%: α{→}β⊢(α{→}β)^*⊢α^*{→}β^*
%:
%: ^bar1
%:
%:
%: ------------------- ----
%: α{→}β⊢(α{→}β)=⊤ ⊤∈T
%: --------------------------
%: α{→}β⊢(α{→}β)∈T α{→}β⊢(α{→}β)^*
%:
%:
%: ------- ----
%: α⊢α=⊤ ⊤∈T
%: -------------
%: α⊢α∈T
%: -------
%: α⊢α^*
%:
%: ^tr4
%:
$$\pu
\begin{array}{c}
\ded{foo1} \qquad \ded{foo2} \qquad \ded{foo3} \\ \\
\ded{foo4} \\ \\
(i'): \quad \ded{foo5} \\ \\
(0'): \quad \ded{tr4} \qquad
(ii',iii'): \quad \ded{bar1} \\ \\
\end{array}
$$
\newpage
\def\dt#1#2{\sm{#1\\#2}}
\def\DT#1#2{\mat{#1\\↓\\#2}}
\def\PDT#1#2{\pmat{#1\\↓\\#2}}
\def\mt#1#2#3#4{\dt#1#2{↦}\dt#3#4}
$Ω=\PDT{\{\dt00,\dt01,\dt11\}}{\{\dt·0,\dt·1\}}$
$\{⊤\}=\PDT{\{\dt11\}}{\{\dt·1\}}$
\msk
$012$:
\quad
$μ=\PDT{\cmat{\mt0011,\, \mt0111,\, \mt1111}}{\cmat{\mt·0·1,\, \mt·1·1}}$
\quad
$T=Ω=\PDT{\{\dt00,\dt01,\dt11\}}{\{\dt·0,\dt·1\}}$
\msk
$0|12$:
\quad
$μ=\PDT{\cmat{\mt0000,\, \mt0111,\, \mt1111}}{\cmat{\mt·0·0,\, \mt·1·1}}$
\quad
$T=\PDT{\{\dt01,\dt11\}}{\{\dt·1\}}$
\msk
$01|2$:
\quad
$μ=\PDT{\cmat{\mt0001,\, \mt0101,\, \mt1111}}{\cmat{\mt·0·1,\, \mt·1·1}}$
\quad
$T=\PDT{\{\dt11\}}{\{\dt·0,\dt·1\}}$
\msk
$0|1|2$:
\quad
$μ=\PDT{\cmat{\mt0000,\, \mt0101,\, \mt1111}}{\cmat{\mt·0·0,\, \mt·1·1}}$
\quad
$T=\{⊤\}=\PDT{\{\dt11\}}{\{\dt·1\}}$
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-anchor-format: "«%s»"
% End: