II. Constructions on Categoriesp.45: 6. Comma Categories

Fix $C, b \in C$. The category $(b \downarrow C)$ of objects under b has objects like $\langle f, c \rangle$, where $c \in C$ and $f : b \to c$. Fix $C, a \in C$. The category $(C \downarrow a)$ of objects over a has objects like $\langle c, f \rangle$, where $c \in C$ and $f : c \to a$.

Fix C, D, $b \in C$. $S: D \to C$. The category $(b \downarrow S)$ of objects S-under b has objects like $\langle f, d \rangle$, where $d \in D$ and $f: b \to Sd$.

Fix C, E, $a \in C$. $T : E \to C$. The category $(T \downarrow a)$ of objects T-over a has objects like $\langle f, d \rangle$, where $d \in D$ and $f : b \to Sd$.

Fix C, D, E, and S, T with $E \xrightarrow{T} C \xleftarrow{S} D$. The comma category (T, S) has objects like $\langle e, d, f \rangle$, where $d \in D$, $e \in E$ and $f : Te \to Sd$.

An object $b \in C$ may be regarded as a functor $b: 1 \to C$ with image b. A category C may be regarded as the identity functor $C \to C$. We have:

 $(b\downarrow C)$ has objects like $\langle *,c,f\rangle$, where $c\in C$ and $f:b\to c$. $(C\downarrow a)$ has objects like $\langle c,*,f\rangle$, where $c\in C$ and $f:c\to a$. $(b\downarrow S)$ has objects like $\langle *,d,f\rangle$, where $d\in D$ and $f:b\to Sd$. $(T\downarrow a)$ has objects like

III. Universals and Limits

p.55: Definition: universal arrow from c to S

Fix $D, C, S: D \to C, r \in D, c \in C$.

Then we have functors

 $D(r,-):D\to\mathbf{Set}$ and

 $C(c, S-): D \to \mathbf{Set}.$

Every $u:c \to Sr$ induces a NT $(S-\circ u):D(r,-) \stackrel{\cdot}{\to} C(c,S-),$ $(S-\circ u)d:D(r,d) \stackrel{\cdot}{\to} C(c,Sd)$ $f'\mapsto Sf'\circ u.$

We say that a pair $\langle r, u \rangle$ is a universal arrow from c to S when $(S - \circ u)$ (i.e., $\lambda d.\lambda f'.Sf' \circ u$) is a natural isomorphism, i.e., when every $(S - \circ u)d$ (i.e., $\lambda f'.Sf' \circ u$) is a bijection.

$$D \xrightarrow{S} C$$

$$egin{array}{c} c & \downarrow u \\ r & \longrightarrow Sr \\ f' \downarrow & \downarrow Sf' \\ d & \longmapsto Sd \end{array}$$

$$D(r,-) \xrightarrow[(\cong)]{(S-\circ u)} C(c,S-)$$

$$D(r,d) \xrightarrow{(S-\circ u)d} C(c,Sd)$$

III. Universals and Limits

p.58: Definition: universal arrow from S to c

Fix $D, C, S: D \to C, r \in C, c \in C$.

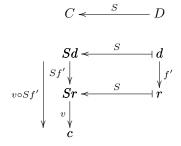
Then we have functors

 $D(-,r):D^{\mathrm{op}}\to\mathbf{Set}$ and

 $C(S-,c,):D^{\mathrm{op}}\to\mathbf{Set}.$

Every $v: Sr \to c$ induces a NT $(v \circ S-)$: $D(-,r) \xrightarrow{\cdot} C(S-,c)$, $(v \circ S-)d$: $D(d,r) \xrightarrow{\cdot} C(Sd,c)$ $f' \mapsto v \circ Sf'$.

We say that a pair $\langle r, v \rangle$ is a universal arrow from S to c when $(v \circ S-)$ (i.e., $\lambda d.\lambda f'.v \circ Sf'$) is a natural isomorphism, i.e., when every $(v \circ S-)d$ (i.e., $\lambda f'.v \circ Sf'$) is a bijection.



$$C(S-,c) \stackrel{(S-\circ u)}{\longleftarrow} D(-,r)$$

$$C(Sd,c) \stackrel{(S-\circ u)d}{\longleftarrow} D(d,r)$$

III. Universals and Limits p.57: universal element

Fix D, $H: D \to \mathbf{Set}$.

A universal element of H is a pair $\langle r, e \rangle$

Then we have a functor

 $D(r,-):D\to\mathbf{Set}.$

Every $e \in Hr$, which can be seen as an arrow $e : * \to Hr$,

...induces a NT
$$((H-)e)$$
 : $D(r,-)$? \rightarrow $C(c,S-)$?, $((H-)e)d$: $D(r,d)$ \rightarrow Hd f \mapsto $(Hf)e$?.

We say that a pair $\langle r, u \rangle$ is a universal arrow from c to S when $(S - \circ u)$ (i.e., $\lambda d.\lambda f'.Sf' \circ u$) is a natural isomorphism, i.e., when every $(S - \circ u)d$ (i.e., $\lambda f'.Sf' \circ u$) is a bijection.

$$D \xrightarrow{H} \mathbf{Set}$$

$$r \longmapsto S \longrightarrow Hr \qquad \stackrel{(Hf)e}{\downarrow} \\ f \downarrow \qquad \qquad \downarrow Hf \qquad \downarrow Hf \\ d \longmapsto S \longrightarrow Hd$$

$$D(r,-) \xrightarrow{(S-\circ u)} H$$

$$D(r,d) \xrightarrow[(\cong)]{(S-\circ u)d} Hd$$

IV. Adjoints

p.79: Adjunctions

Fix X, A, $F: X \to A$, $G: A \to X$.

Then we have functors

 $A(F-,-): X^{\mathrm{op}} \times A \to \mathbf{Set}$ and

 $X(-,G-):X^{\mathrm{op}}\times A\to \mathbf{Set}.$

An adjunction from X to A is a triple $\langle F, G, \varphi \rangle : X \longrightarrow A$

where $\varphi: A(F-,-) \to X(-,G-)$ is a natural iso, i.e.,

for all $x \in X$, $a \in A$ this is a bijection: $\varphi_{x,a} : A(Fx,a) \to X(x,Ga)$

and φ is natural in the sense that...

IV. Adjoints

p.79: Adjunctions - the naturality of φ

Fix X, A, $F: X \to A$, $G: A \to X$, $\langle F, G, \varphi \rangle : X \to A$.

Remember that we have functors

 $A(F-,-): X^{\mathrm{op}} \times A \to \mathbf{Set}$ and

 $X(-,G-):X^{\mathrm{op}}\times A\to \mathbf{Set}$

and $\varphi: A(F-,-) \to X(-,G-)$ is a natural transformation (a natural iso)...

Let $\langle h, k \rangle : \langle x, a \rangle \to \langle x', a' \rangle$ be a morphism in $X^{\text{op}} \times A$.

The naturality of φ is easier to see in this diagram:

VI. Monads and Algebras

p.137: Monads

Fix $X, T: X \to X, \mu: T^2 \xrightarrow{\cdot} T, \eta: I_X \xrightarrow{\cdot} T$. Then we can make a diagram:

$$\begin{split} I & \stackrel{\eta}{\longrightarrow} T \xleftarrow{\mu} T^2 & x \stackrel{\eta x}{\longrightarrow} Tx \xleftarrow{\mu x} T^2 x \\ & T & \stackrel{T\eta}{\longrightarrow} T^2 \xleftarrow{T\mu} T^3 & Tx \stackrel{T(\eta x)}{\longrightarrow} T^2 x \xleftarrow{T(\mu x)} T^3 x \\ & & \downarrow^{\eta T} & \downarrow^{\mu T} & \eta(Tx) & \downarrow^{\mu x} & \downarrow^{\mu (Tx)} \\ & & T^2 & \stackrel{\pi}{\longrightarrow} T \xleftarrow{\mu} T^2 & T^2 x \stackrel{T^2}{\longrightarrow} Tx \xleftarrow{\mu x} T^2 x \end{split}$$

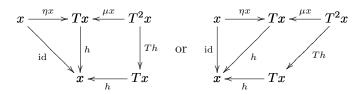
A monad $T = \langle T, \eta, \mu \rangle$ in a category X is a triple as above that obeys $\mu \circ \eta T = I_X = \mu \circ T \eta$ and $\mu \circ T \mu = \mu \circ \mu T$.

VI. Monads and Algebras

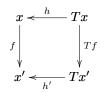
2. Algebras for a monad

p.140: T-algebras

Fix X and a monad $T=\langle T,\eta,\mu\rangle$ in X. A T-algebra is a pair $\langle x,h\rangle$ with $x\in X$ and $h:Tx\to x$ that obeys $\mathrm{id}_x=h\circ\eta x,\,h\circ\mu x=h\circ Th$:



A morphism $f:\langle x,h\rangle \to \langle x',h'\rangle$ (in the category X^T of T-algebras) is a morphism $f:x\to x'$ obeying $f\circ h=h'\circ Tf$.



VI. Monads and Algebras

First examples

Let M be a monoid.

We will call its identity e and its elements a, b, c, etc.

Multiplication in M will be written as ab.

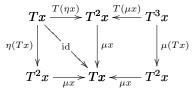
Let Q, R, S be (arbitrary) sets.

Then
$$T = (\times M) : \mathbf{Set} \to \mathbf{Set}$$
 and $\langle \times M, \eta, \mu \rangle$ is a monad on \mathbf{Set} , where: $\eta S : S \to S \times M$ and $\mu S : (S \times M) \times M \to S \times M$ $\langle \langle s, a \rangle, b \rangle \mapsto \langle s, ab \rangle.$

In λ -notation they are $\eta = \lambda S.\lambda s.\langle s, e \rangle$ and $\mu = \lambda S.\lambda \langle \langle s, a \rangle, b \rangle.\langle s, ab \rangle$. Note that the conditions on η and μ , that we gave abstractly as:

$$x \xrightarrow{\eta x} Tx \xleftarrow{\mu x} T^2x$$

$$T \xrightarrow{T(\eta x)} T^2 \xrightarrow{T(\mu x)} T^3$$



become:

VI. Monads and Algebras

First examples (2)

Fix a monoid M and sets Q, R.

An action of M on a set Q is a map $h: Q \times M \rightarrow Q$ $\langle q, a \rangle \mapsto qa$

obeying q(ab) = (qa)b and qe = q.

An action of M on a set R is a map h': $R \times M \rightarrow R$

 $\langle r, a \rangle \mapsto qa$

obeying r(ab) = (ra)b and re = r. Note that we don't write h or h'.