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Abstract

This paper shows a way to interpret (propositional) intuitionistic logic visually
using finite Planar Heyting Algebras (“ZHAs”), that are certain subsets of Z2. We
also show the connection between ZHAs and the familiar semantics for IPL where
the truth-values are open sets: the points of a ZHA H correspond to the open sets
of a finite topological space (P,O(P )), where this (P,O(P )) is an “order topology
on a 2-column graph”. The logic of ZHAs is between classical and intuitionistic
but different from both; there are some sentences that are intuitionistically false
but that can’t have countermodels in ZHAs — their countermodels would need
three “columns” or more.

When a mathematical text says “for children” this means either that it is
written for people without lots of mathematical knowledge or that it doesn’t
require mathematical maturity; we follow the second, stronger, meaning of the
term. “Children” for us means people who are not able to understand structures
that are too abstract straight away, they need particular cases first — and they
also have trouble with infinite objects, and with theorems about things that they
can’t calculate: calculating is much more basic for them than proving. Writing
“for children” makes us enforce a style where everything is constructive and finite
and all the main examples are objects that are easy to draw explicitly.

Keywords: Heyting Algebras, Intuitionistic Logic, diagrammatic reasoning.

Introduction
This paper shows a way to interpret (propositional) intuitionistic logic visually using
finite Planar Heyting Algebras, that are certain subsets of Z2. We call these subsets of
Z2 “ZHAs” (sec.4), and the interpretation of the connectives is described in sec.7. In
the second half of the paper — sec.11 onwards — we show the relation between ZHAs
and topologies on certain finite sets; it turns out that ZHAs are exactly the topologies
on “2-column graphs” (sections 14, 15, 17).
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The “for children” of the title uses the term “children” in a unusual way. When we
explain a theorem to children — in the strict sense of the term — we focus on concrete
examples, and we avoid generalizations, abstract structures and infinite objects; when
we present something to “children”, now in the wider sense of the term that means
“people without mathematical maturity”, or even “people without expertise in a certain
area”, we usually do something similar: we start from a few motivating examples, and
only then we generalize. This is in stark contrast with how things are done for example
in most books on Category Theory, where concepts are usually presented first in the
most general way possible, and then the motivating cases are mentioned very briefly
— let’s call that style “mathematics for adults”. Here we try to do things in particular
cases first, but in a way that our proofs can be “lifted” to general proofs with ease, with
only trivial changes.

Except for the last section, this paper has been written to be self-contained and read-
able by students with just a basic knowledge of discrete mathematics and λ-notation.

Two sequels to this paper are in preparation: one that shows how to visualize
“closure operators” on ZHAs, and another one that uses that to show how to visualize
several theorems about geometric morphism on toposes (from section A4 of [Joh02]).
It may be possible, in the future, to find meta-theorems about how to do “mathematics
for adults” via “mathematics for children”, or to find criteria that say which examples
“for children” are good enough for lifting; but at this moment we are simply beginning
to build a corpus of examples and techniques — an approach was inspired by sections
22 and 23 of [Och13].

1 Positional notations
Definition: a ZSet is a finite, non-empty subset of N2 that touches both axes, i.e., that
has a point of the form (0,_) and a point of the form (_, 0). We will often represent
ZSets using a bullet notation, with or without the axes and ticks. For example:

K =

{
(1,3),

(0,2), (2,2),
(1,1),
(1,0)

}
= =

We will use the ZSet above a lot in examples, so let’s give it a short name: K
(“kite”).

The condition of touching both axes is what lets us represent ZSets unambiguously
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using just the bullets:

  =(

  =)

We can use a positional notation to represent functions from a ZSet. For example,
if

f : K → N
(x, y) 7→ x

then

f =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

We will sometimes use λ-notation to represent functions compactly. For example:

λ(x, y):K.x =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

λ(x, y):K.y =

{
((1,3),3),

((0,2),2), ((2,2),2),
((1,1),1),
((1,0),0)

}
=

3
2 2
1
0

The “reading order” on the points of a ZSet S “lists” the points of S starting from
the top and going from left to right in each line. More precisely, if S has n points then
rS : S → {1, . . . , n} is a bijection, and for example:

rK =
1

2 3
4
5

Subsets of a ZSet are represented with a notation with ‘•’s and ‘·’, and partial
functions from a ZSet are represented with ‘·’s where they are not defined. For example:

•
· •
•
·

1
· 3
4
·

The characteristic function of a subset S ′ of a ZSet S is the function χS′ : S → {0, 1}
that returns 1 exactly on the points of S ′; for example, 1

0 1
1
0

is the characteristic function
of •· ••·

⊂ •• •••
. We will sometimes denote subsets by their characteristic functions because

this makes them easier to “pronounce” by reading aloud their digits in the reading order
— for example, 1

0 1
1
0

is “one-zero-one-one-zero” (see sec.12).
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2 ZDAGs
We will sometimes use the bullet notation for a ZSet S as a shorthand for one of the
two DAGs induced by S: one with its arrows going up, the other one with them going
down. For example: sometimes

•• •••
will stand for:

•

• •

•

•

↙ ↘

↘ ↙

↓

=

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

=

({
(1,3),

(0,2), (2,2),
(1,1),
(0,0)

}
,

{
((1,3),(0,2)),((1,3),(2,2)),
((0,2),(1,1)),((2,2),(1,1)),

((1,1),(0,0))

})

Let’s formalize this.
Consider a game in which black and white pawns are placed on points of Z2, and

they can move like this:
•

↙↓↘
• • •

◦ ◦ ◦
↖↑↗
◦

Black pawns can move from (x, y) to (x+ k, y − 1) and white pawns from (x, y) to
(x + k, y + 1), where k ∈ {−1, 0, 1}. The mnemonic is that black pawns are “solid”,
and thus “heavy”, and they “sink”, so they move down; white pawns are “hollow”, and
thus “light”, and they “float”, so they move up.

Let’s now restrict the board positions to a ZSet S. Black pawns can move from (x, y)
to (x + k, y − 1) and white pawns from (x, y) to (x + k, y + 1), where k ∈ {−1, 0, 1},
but only when the starting and ending positions both belong to S. The sets of possible
black pawn moves and white pawn moves on S can be defined formally as:

BPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y − 1 }
WPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y + 1 }

...and now please forget everything else you expect from a game — like starting position,
capturing, objective, winning... the idea of a “game” was just a tool to let us explain
BPM(S) and WPM(S) quickly.

A ZDAG is a DAG of the form (S,BPM(S)) or (S,WPM(S)), where S is a ZSet.
A ZPO is partial order of the form (S,BPM(S)∗) or (S,WPM(S)∗), where S is a

ZSet and the ‘∗’ denotes the transitive-reflexive closure of the relation.
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Sometimes, when this is clear from the context, a bullet diagram like •• ••• will stand
for either the ZDAGs ( •• ••• ,BPM(

•• ••• )) or ( •• ••• ,WPM(
•• ••• )), or for the ZPOs ( •• ••• ,BPM(

•• ••• )
∗)

or (
•• ••• ,WPM(

•• ••• )
∗) (sec.4).

3 LR-coordinates
The lr-coordinates are useful for working on quarter-plane of Z2 that looks like N2 turned
45◦ to the left. Let 〈l, r〉 := (−l+ r, l+ r); then (the bottom part of) { 〈l, r〉 | l, r ∈ N }
is:

〈4, 0〉 〈3, 1〉 〈2, 2〉 〈1, 3〉 〈0, 4〉

〈3, 0〉 〈2, 1〉 〈1, 2〉 〈0, 3〉

〈2, 0〉 〈1, 1〉 〈0, 2〉

〈1, 0〉 〈0, 1〉

〈0, 0〉

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Sometimes we will write lr instead of 〈l, r〉. So:

40 31 22 13 04

30 21 12 03

20 11 02

10 01

00

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Let LR = { 〈l, r〉 | l, r ∈ N }.

4 ZHAs
A ZHA is a subset of LR “between a left and a right wall”, as we will see.

A triple (h, L,R) is a “height-left-right-wall” when:
1) h ∈ N
2) L : {0, . . . , h} → Z and R : {0, . . . , h} → Z
3) L(h) = R(h) (the top points of the walls are the same)
4) L(0) = R(0) = 0 (the bottom points of the walls are the same, 0)
5) ∀y ∈ {0, . . . , h}. L(y) ≤ R(y) (“left” is left of “right”)
6) ∀y ∈ {1, . . . , h}. L(y)− L(y − 1) = ±1 (the left wall makes no jumps)
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7) ∀y ∈ {1, . . . , h}. R(y)−R(y − 1) = ±1 (the right wall makes no jumps)

The ZHA generated by a height-left-right-wall (h, L,R) is the set of all points of
LR with valid height and between the left and the right walls. Formally:

ZHAG(h, L,R) = { (x, y) ∈ LR | y ≤ h, L(y) ≤ x ≤ R(y) }.

A ZHA is a set of the form ZHAG(h, L,R), where the triple (h, L,R) is a height-
left-right-wall.

Here is an example of a ZHA (with the white pawn moves on it):

(−4, 8)

(−3, 9)

(−3, 7)

(−2, 8)

(−2, 6)

(−3, 3)

(−2, 4)

(−1, 5)

(−2, 2)

(−1, 3)

(0, 4)

(−1, 1)

(0, 2)

(1, 3)

(0, 0)

(1, 1)

↗ ↖

↖ ↗

↖

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗ ↖

↖ ↗
L(0) = 0 R(0) = 0

L(1) = −1 R(1) = 1

L(2) = −2 R(2) = 0

L(3) = −3 R(3) = 1

L(4) = −2 R(4) = 0

L(5) = −1 R(5) = −1

L(6) = −2 R(6) = −2

L(7) = −3 R(7) = −3

L(8) = −4 R(8) = −2

L(9) = −3 R(9) = −3 h = 9L(9) = R(9)

L(0) = R(0) = 0

We will see later (in section 7) that ZHAs (with white pawn moves) are Heyting
Algebras.

5 Conventions on diagrams without axes
We can use a bullet notation to denote ZHAs, but look at what happens when we start
with a ZHA, erase the axes, and then add the axes back using the convention from
sec.1:

  

The new, restored axes are in a different position — the bottom point of the original
ZHA at the left was (0, 0), but in the ZSet at the right the bottom point is (2, 0).
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The convention from sec.1 is not adequate for ZHAs.
Let’s modify it!
From this point on, the convention on where to draw the axes will be this one: when

it is clear from the context that a bullet diagram represents a ZHA, then its (unique)
bottom point has coordinate (0, 0), and we use that to draw the axes; otherwise we
apply the old convention, that chooses (0, 0) as the point that makes the diagram fit in
N2 and touch both axes.

The new convention with two cases also applies to functions from ZHAs, and to
partial functions and subsets. For example:

B =

•

•
•
•

•
•
•

•
•
• (a ZHA) λ(x, y):B.x =

-1

-2
-1

0

-1
0

1

0
1

2

λ〈l, r〉:B.l =

3

2
2
2

1
1
1

0
0
0 λ〈l, r〉:B.r =

2

0
1
2

0
1
2

0
1
2

We will often denote ZHAs by the identity function on them:

λ〈l, r〉:B.〈l, r〉 = λlr:B.lr =

32

20
21
22

10
11
12

00
01
02 B =

32

20
21
22

10
11
12

00
01
02

Note that we are using the compact notation from the end of section 3: ‘lr’ instead of
‘〈l, r〉’.

6 Propositional calculus
A PC-structure is a tuple

L = (Ω,≤,>,⊥,∧,∨,→,↔,¬),

where:
Ω is the “set of truth values”,
≤ is a relation on Ω,
> and ⊥ are two elements of Ω,
∧, ∨, →, ↔ are functions from Ω× Ω to Ω,
¬ is a function from Ω to Ω.
Classical Logic “is” a PC-structure, with Ω = {0, 1}, > = 1, ⊥ = 0, ≤= {(0, 0), (0, 1),

(1, 0)}, ∧ =
{

((0,0),0),((0,1),0),
((1,0),0),((1,1),1)

}
, etc.

PC-structures let us interpret expressions from Propositional Calculus (“PC-expressions”),
and let us define a notion of tautology. For example, in Classical Logic,
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• ¬¬P ↔ P is a tautology because it is valid (i.e., it yields >) for all values of P
in Ω,

• ¬(P ∧ Q) → (¬P ∨ ¬Q) s a tautology because it is valid for all values of P and
Q in Ω,

• but P ∨Q→ P ∧Q is not a tautology, because when P = 0 and Q = 1 the result
is not >:

P︸︷︷︸
0

∨ Q︸︷︷︸
1︸ ︷︷ ︸

1

→ P︸︷︷︸
0

∧ Q︸︷︷︸
1︸ ︷︷ ︸

0︸ ︷︷ ︸
0

7 Propositional calculus in a ZHA
Let Ω be the set of points of a ZHA and ≤ the default partial order on it. The default
meanings for >,⊥,∧,∨,→,↔,¬ are these ones:

〈a, b〉 ≤ 〈c, d〉 := a ≤ c ∧ b ≤ d

〈a, b〉 ≥ 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 above 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 below 〈c, d〉 := a ≤ c ∧ b ≤ d

〈a, b〉 leftof 〈c, d〉 := a ≥ c ∧ b ≤ d

〈a, b〉 rightof 〈c, d〉 := a ≤ c ∧ b ≥ d

valid(〈a, b〉) := 〈a, b〉 ∈ Ω

ne(〈a, b〉) := if valid (〈a, b+ 1〉) then ne(〈a, b+ 1〉) else 〈a, b〉 end
nw(〈a, b〉) := if valid (〈a+ 1, b〉) then nw(〈a+ 1, b〉) else 〈a, b〉 end

〈a, b〉 ∧ 〈c, d〉 := 〈min(a, c),min(b, d)〉
〈a, b〉 ∨ 〈c, d〉 := 〈max(a, c),max(b, d)〉

〈a, b〉 → 〈c, d〉 := if 〈a, b〉 below 〈c, d〉 then >
elseif 〈a, b〉 leftof 〈c, d〉 then ne(〈c, d〉)
elseif 〈a, b〉 rightof 〈c, d〉 then nw(〈c, d〉)
elseif 〈a, b〉 above 〈c, d〉 then 〈c, d〉
end

> := sup(Ω)

⊥ := 〈0, 0〉
¬〈a, b〉 := 〈a, b〉 → ⊥

〈a, b〉 ↔ 〈c, d〉 := (〈a, b〉 → 〈c, d〉) ∧ (〈c, d〉 → 〈a, b〉)
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Let Ω be the ZHA at the top left in the figure below. Then, with the default
meanings for the connectives neither ¬¬P → P nor ¬(P ∧ Q) → (¬P ∨ ¬Q) are
tautologies, as there are valuations that make them yield results different than > = 32:

32

20
21

22

10
11

12

00
01

02

>
·
· →

P ′′ · P ′

P ·
⊥

(¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

)→ P︸︷︷︸
10

︸ ︷︷ ︸
12

>
∨
· ·

Q′ · P ′

P Q
∧

¬( P︸︷︷︸
10

∧ Q︸︷︷︸
01︸ ︷︷ ︸

00

)

︸ ︷︷ ︸
32

→ (¬ P︸︷︷︸
10︸ ︷︷ ︸

02

∨¬ Q︸︷︷︸
01︸ ︷︷ ︸

20︸ ︷︷ ︸
22

)

︸ ︷︷ ︸
22

So: some classical tautologies are not tautologies in this ZHA.
The somewhat arbitrary-looking definition of ‘→’ will be explained at the end of

the next section.

8 Heyting Algebras
A Heyting Algebra is a PC-structure

H = (Ω,≤H ,>H ,⊥H ,∧H ,∨H ,→H ,↔H ,¬H),

in which:
1) (Ω,≤H) is a partial order
2) >H is the top element of the partial order
3) ⊥H is the bottom element of the partial order
4) P ↔H Q is the same as (P →H Q) ∧H (Q→H P )
5) ¬HP is the same as P →H ⊥H

6) ∀P,Q,R ∈ Ω. (P ≤H (Q ∧H R))↔ ((P ≤H Q) ∧ (P ≤H R))
7) ∀P,Q,R ∈ Ω. ((P ∨H Q) ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8) ∀P,Q,R ∈ Ω. (P ≤H (Q→H R))↔ ((P ∧H Q) ≤H R)
6’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y )↔ ((P ≤H Q) ∧ (P ≤H R))
7’) ∀P,Q ∈ Ω.∃!X ∈ Ω.∀R ∈ Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y )↔ ((P ∧H R) ≤H R)
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The conditions 6’, 7’, 8’ say that there are unique elements in Ω that “behave as”
Q∧H R, P ∨H Q and Q→H R for given P , Q, R; the conditions 6,7,8 say that Q∧H R,
P ∨H Q and Q→H R are exactly the elements with this behavior.

The positional notation on ZHAs is very helpful for visualizing what the conditions
6’,7’,8’,6,7,8 mean. Let Ω be the ZDAG on the left below:

40
41

42
43

44

30
31

32
33

34

20
21

22
23

24

10
11

12
13

14

00
01

02
03

04

>
· ·
· · ·
· · · (→)
· Q · · ·
· · R ·
· (∧) ·
· ·
⊥

>
· ·
· · ·
· (∨) · ·
· P · · ·
· · Q ·
· · ·
· ·
⊥

we will see that
a) if Q = 31 and R = 12 then Q ∧H R = 11,
b) if P = 31 and Q = 12 then P ∨H Q = 32,
c) if Q = 31 and R = 12 then Q→H R = 14.

Let’s see each case separately — but, before we start, note that in 6, 7, 8, 6’, 7’, 8’
we work part with truth values in Ω and part with standard truth values. For example,
in 6, with P = 20, we have:

( P︸︷︷︸
20

≤H ( Q︸︷︷︸
31

∧H R︸︷︷︸
12︸ ︷︷ ︸

11

)

︸ ︷︷ ︸
0

)↔ (( P︸︷︷︸
20

≤H Q︸︷︷︸
31︸ ︷︷ ︸

1

) ∧ ( P︸︷︷︸
20

≤H R︸︷︷︸
12︸ ︷︷ ︸

0

)

︸ ︷︷ ︸
0

)

︸ ︷︷ ︸
1

a) Let Q = 31 and R = 12. We want to see that Q ∧H R = 11, i.e., that

∀P ∈ Ω. (P ≤H Y )↔ ((P ≤H Q) ∧ (P ≤H R))

holds for Y = 11 and for no other Y ∈ Ω. We can visualize the behavior of P ≤H Q
for all ‘P ’s by drawing λP :Ω.(P ≤H Q) in the positional notation; then we do the
same for λP :Ω.(P ≤H R) and for λP :Ω.((P ≤H Q) ∧ (P ≤H R)). Suppose that the
full expression, ‘∀P :Ω.___’, is true; then the behavior of the left side of the ‘↔’,
λP :Ω.(P ≤H Y ), has to be a copy of the behavior of the right side, and that lets us
find the only adequate value for Y .
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The order in which we calculate and draw things is below, followed by the results
themselves:

(P ≤H Y︸︷︷︸
(7)︸ ︷︷ ︸

(6)

)↔ ((P ≤H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ∧ (P ≤H R︸︷︷︸
(2)︸ ︷︷ ︸

(4)

)

︸ ︷︷ ︸
(5)

)

(P ≤H Y︸︷︷︸
11︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)↔ ((P ≤H Q︸︷︷︸
31︸ ︷︷ ︸

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

) ∧ (P ≤H R︸︷︷︸
12︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
0
0

1
1
1
0
0

)

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)

b) Let P = 31 and Q = 12. We want to see that P ∨H Q = 32, i.e., that

∀R:Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))

holds for X = 32 and for no other X ∈ Ω. We do essentially the same as we did in (a),
but now we calculate λR:Ω.(P ≤H R), λR:Ω.(Q ≤H R), and λR:Ω.((P ≤H R)∧ (Q ≤H

R)). The order in which we calculate and draw things is below, followed by the results
themselves:

( X︸︷︷︸
(7)

≤H R

︸ ︷︷ ︸
(6)

)↔ (( P︸︷︷︸
(1)

≤H R

︸ ︷︷ ︸
(3)

) ∧ ( Q︸︷︷︸
(2)

≤H R

︸ ︷︷ ︸
(4)

)

︸ ︷︷ ︸
(5)

)

( X︸︷︷︸
32

≤H R︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)↔ (( P︸︷︷︸
31

≤H R︸ ︷︷ ︸
0
1
1
1
1

0
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

) ∧ ( Q︸︷︷︸
12

≤H R

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

)

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)
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c) Let Q = 31 and R = 12. We want to see that Q→H R = 14, i.e., that

∀P :Ω. (P ≤H Y )↔ ((P ∧H Q) ≤H R)

holds for Y = 14 and for no other Y ∈ Ω. Here the strategy is slightly different. We
start by visualizing λP :Ω.(P ∧H Q), which is a function from Ω to Ω, not a function
from Ω to {0, 1} like the ones we were using before. The order in which we calculate
and draw things is below, followed by the results:

(P ≤H Y︸︷︷︸
(6)︸ ︷︷ ︸

(5)

)↔ ((P ∧H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ≤H R︸︷︷︸
(2)

︸ ︷︷ ︸
(4)

)

(P ≤H Y︸︷︷︸
14︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)↔ ((P ∧H Q︸︷︷︸
31︸ ︷︷ ︸

30
31
31
31
31

30
31
31
31
31

20
21
21
21
21

10
11
11
11
11

00
01
01
01
01

) ≤H R︸︷︷︸
12

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)

9 The two implications are equivalent
In sec.7 we gave a definition of ‘→’ that is easy to calculate, and in sec.8 we saw a way
to find by brute force1 a value for Q→ R that obeys

(P ≤ (Q→ R))↔ (P ≤ Q ∧R)

for all P . In this section we will see that these two operations — called ‘ C→’ and ‘HA→’
from here on — always give the same results.

Theorem 9.1 We have (Q
C→ R) = (Q

HA→ R), for any ZHA H and Q,R ∈ H.

The proof will take the rest of this section, and our approach will be to check that
for any ZHA H and Q,R ∈ H this holds, for all P ∈ H:

(P ≤ (Q
C→ R))↔ (P ≤ Q ∧R).

1“When in doubt use brute force” — Ken Thompson
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In ‘ C→’ the order of the cases is very important. For example, if cd = 21 and ef = 23
then both “cd below ef” and “cd leftof ef” are true, but “cd below ef” takes precedence
and so cd

C→ ef = >. We can fix this by creating variants of below, leftof, righof and
above that make the four cases disjoint. Abbreviating below, leftof, righof and above as
b, l, r and a, we have:

cd b ef := c ≤ e ∧ d ≤ f cd b′ ef := c ≤ e ∧ d ≤ f

cd l ef := c ≤ e ∧ d ≥ f cd l′ ef := c ≤ e ∧ d > f

cd r ef := c ≥ e ∧ d ≤ f cd r′ ef := c > e ∧ d ≤ f

cd a ef := c > e ∧ d > f cd a′ ef := c > e ∧ d > f

visually the regions are these, for R fixed:

R

Q a′ R

Q b′ R

Q l′ R Q r′ R

We clearly have:

Q
C→ R =


if Q bR then >
elseif Q lR then ne(R)

elseif Q r R then nw(R)

elseif Q aR then R

end

 =


if Q b′ R then >
elseif Q l′ R then ne(R)

elseif Q r′ R then nw(R)

elseif Q a′ R then R

end


and P ≤ Q

C→ R can be expressed as a conjunction of the four cases:

((P ≤ Q
C→ R)↔ (P ∧Q ≤ R))

↔


Q b′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R))



↔


Q b′ R→ ((P ≤ >)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ ne(R))↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ nw(R))↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ R)↔ (P ∧Q ≤ R))


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Let’s introduce a notation: a “â” means “make this digit as big possible without
leaving the ZHA”. So,

in

53
54

42
43
44

31
32
33
34

20
21
22
23
24

10
11
12
13

00
01
02
03

we have
1̂2̂ = 54 = >,
12̂ = 13 = ne(12),

1̂2 = 42 = nw(12);

This lets us rewrite > as êf̂ , ne(ef) as ef̂ , and nw(ef) as êf .
Making P = ab, Q = cd, R = ef , we have:

((ab ≤ cd
C→ ef)↔ (ab ∧ cd ≤ ef))

↔


cd b′ ef → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
cd l′ ef → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
cd r′ ef → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
cd a′ ef → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ cd)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ed)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ cf)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ >) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ a ≤ e) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ b ≤ f) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (a ≤ e ∧ b ≤ f))


In the last conjunction the four cases are trivial to check.
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10 Logic in a Heyting Algebra
In sec.8 we saw a set of conditions — called 1 to 8’ — that characterize the “Heyting-
Algebra-ness” of a PC-structure. It is easy to see that Heyting-Algebra-ness, or “HA-
ness”, is equivalent to this set of conditions:

1 ∀P. (P ≤ P ) id

∀P,Q,R. (P ≤ R) ← (P ≤ Q) ∧ (Q ≤ R) comp

2 ∀P. (P ≤ >) >1

3 ∀Q. (⊥ ≤ Q) ⊥1

6 ∀P,Q,R. (P ≤ Q ∧R) → (P ≤ Q) ∧1
∀P,Q,R. (P ≤ Q ∧R) → (P ≤ R) ∧2
∀P,Q,R. (P ≤ Q ∧R) ← (P ≤ Q) ∧ (P ≤ R) ∧3

7 ∀P,Q,R. (P ∨Q ≤ R) → (P ≤ R) ∨1
∀P,Q,R. (P ∨Q ≤ R) → (Q ≤ R) ∨2
∀P,Q,R. (P ∨Q ≤ R) ← (P ≤ R) ∧ (Q ≤ R) ∨3

8 ∀P,Q,R. (P ≤ Q→R) → (P ∧Q ≤ R) →1

∀P,Q,R. (P ≤ Q→R) ← (P ∧Q ≤ R) →2

We omitted the conditions 4 and 5, that defined ‘↔’ and ‘¬’ in terms of the other
operators. The last column gives a name to each of these new conditions.

These new conditions let us put (some) proofs about HAs in tree form, as we shall
see soon.

Let us introduce two new notations. The first one,

(expr)
[
v1:=repl1
v2:=repl2

]
indicates simultaneous substitution of all (free) occurrences of the variables v1 and v2
in expr by repl1 and repl2. For example,

((x+ y) · z)
[ x:=a+y

y:=b+z
z:=c+x

]
= ((a+ y) + (b+ z)) · (c+ x).

The second is a way to write ‘→’s as horizontal bars. In

A B C

D
α

E F

G
β

H

I
γ

J
δ

K
ε

L M

N
ζ

O

P
η

the trees mean:

• if A, B, C are true then D is true (by α),
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• if E, F , are true then G is true (by β),

• if H is true then I is true (by γ),

• J is true (by δ, with no hypotheses),

• K is true (by ε); if L and M then N (by ζ); if K, N , O, then P (by η); combining
all this we get a way to prove that if L, M , O, then P ,

where α, β, γ, δ, ε, ζ, η are usually names of rules.
The implications in the table in the beginning of this section can be rewritten as

“tree rules” as:

P ≤ P
id

P ≤ Q Q ≤ R

P ≤ R
comp

P ≤ > >1 ⊥ ≤ Q
⊥1

P ≤ Q ∧R

P ≤ Q
∧1

P ≤ Q ∧R

P ≤ R
∧2

P ≤ Q P ≤ R

P ≤ Q ∧R
∧3

P ∨Q ≤ R

P ≤ R
∨1

P ∨Q ≤ R

Q ≤ R
∨2

P ≤ R Q ≤ R

P ∨Q ≤ R
∨3

P ≤ Q→R

P ∧Q ≤ R
→1

P ∧Q ≤ R

P ≤ Q→R
→2

Note that the ‘∀P,Q,R ∈ Ω’s are left implicit in the tree rules, which means that
every substitution instance of the tree rules hold; sometimes — but rarely — we will
indicate the substitution explicitly, like this,(

P ∧Q ≤ R

P ≤ Q→R
→2

)[
Q:=P→⊥
R:=⊥

]
 

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

(→2)
[
Q:=P→⊥
R:=⊥

]
 

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥) →2

[
Q:=P→⊥
R:=⊥

]
Usually we will only say ‘→2’ instead of ‘→2

[
Q:=P→⊥
R:=⊥

]
’ at the right of a bar, and the

task of discovering which substitution has been used is left to the reader.
The tree rules can be composed in a nice visual way. For example, this,

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ P
∧1

P ≤ R

P ∧Q ≤ R
comp

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ Q
∧2

Q ≤ S

P ∧Q ≤ S
comp

P ∧Q ≤ R ∧ S
∧3
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“is” a proof for:

∀P,Q,R, S ∈ Ω. (P ≤ R) ∧ (Q ≤ S)→ ((P ∧Q) ≤ (R ∧ S)).

10.1 Derived rules
Note: in this section we will ignore the operators ‘↔’ and ‘¬’ in PC-structures; we will
think that every ‘P ↔ Q’ is as abbreviation for ‘(P→Q) ∧ (Q→P )’ and every ‘¬P ’ is
an abbreviation for ‘P→>’.

We’ll write [>1], . . . , [→2] for the “linear” versions of the rules in last section — for
example, [→2] is (∀P,Q,R ∈ Ω. (P∧Q ≤ R)→ (P ≤ Q→R)) — and if S = {r1, . . . , rn}
is a set of rules, each in tree form, then [S] = [r1]∧ . . .∧ [rn], and an “S-tree” is a proof
in tree form that only uses rules that are in the set S.

Let HA-ness1, HA-ness2, HA-ness3, be these sets, with the rules from sec.10:

HA-ness1 = {id, comp,>1,⊥1,∧3,∨3,→2},
HA-ness2 = {∧1,∧2,∨1,∨2,→1},
HA-ness3 = HA-ness1 ∪ HA-ness2

and let HA-ness4, HA-ness5 and HA-ness7 be these ones, where the new rules are the
ones at the left column of Figure 1:

HA-ness4 = {∧4,∧5,∨4,∨5,MP0,MP}
HA-ness5 = HA-ness1 ∪ HA-ness4
HA-ness7 = HA-ness1 ∪ HA-ness2 ∪ HA-ness4

Note that the trees in the right of Figure 1 are HA-ness3-trees.
Figure 1 can be interpreted in two ways. The first one is that it shows that

[HA-ness3] → [∧4],
[HA-ness3] → [∧5],
[HA-ness3] → [∨4],
[HA-ness3] → [∨5],
[HA-ness3] → [MP0],

[HA-ness3] → [MP],

[HA-ness3] → [HA-ness4],
[HA-ness3] → [HA-ness7];

the second one is that it shows a way to replace occurrences of ∧4, ∧5, ∨4, ∨5, MP0,
MP. Take an HA-ness7-tree, T . Call it hypotheses H1, . . . , Hn, and its conclusion C,
Replace each occurrence of ∧4, ∧5, ∨4, ∨5, MP0, MP in T by the corresponding tree in
the right side of Figure 1. The result is a new tree, T ′, which is “equivalent” to T in
the sense of having the same hypotheses and conclusion as T . So,
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Q ∧R ≤ Q
∧4

:=

Q ∧R ≤ Q ∧R
id [ P :=Q∧R ]

Q ∧R ≤ Q
∧1 [ P :=Q∧R ]

Q ∧R ≤ R
∧5

:=

Q ∧R ≤ Q ∧R
id [ P :=Q∧R ]

Q ∧R ≤ R
∧2 [ P :=Q∧R ]

P ≤ P ∨Q
∨4

:=

P ∨Q ≤ P ∨Q
id [ P :=P∨Q ]

P ≤ P ∨Q
∨1 [ R:=P∨Q ]

Q ≤ P ∨Q
∨5

:=

P ∨Q ≤ P ∨Q
id [ P :=P∨Q ]

Q ≤ P ∨Q
∨2 [ R:=P∨Q ]

Q ∧ (Q→R) ≤ R
MP0 :=

Q→R ≤ Q→R
id

(Q→R) ∧Q ≤ R
→1

P ≤ Q P ≤ Q→R

P ≤ R
MP

:=

P ≤ Q P ≤ Q→R

P ≤ Q ∧ (Q→R) Q ∧ (Q→R) ≤ R
MP0

P ≤ R
comp

Figure 1: Derived rules
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P ≤ Q ∧R

P ≤ Q
∧1

:=

P ≤ Q ∧R Q ∧R ≤ Q
∧4

P ≤ Q
comp

P ≤ Q ∧R

P ≤ R
∧2

:=

P ≤ Q ∧R Q ∧R ≤ R
∧5

P ≤ R
comp

P ∨Q ≤ R

P ≤ R
∨1

:=

P ≤ P ∨Q
∨4

P ∨Q ≤ R

P ≤ R
comp

P ∨Q ≤ R

Q ≤ R
∨2

:=

Q ≤ P ∨Q
∨5

P ∨Q ≤ R

Q ≤ R
comp

P ≤ Q→R

P ∧Q ≤ R
→1

:=

P ∧Q ≤ Q
∧5

P ∧Q ≤ P
∧4

P ≤ Q→R

P ∧Q ≤ Q→R
comp

P ∧Q ≤ Q ∧ (Q→R)
∧3

Q ∧ (Q→R) ≤ R
MP0

P ∧Q ≤ R
comp

Figure 2: Derived rules (2)
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• every HA-ness3-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness3-tree.

We call this trick “derived rules” — the rules in HA-ness4 are “derived” from
HA-ness3, and HA-ness3 and HA-ness7 are “equivalent” in the sense that they “prove
the same things”.

Now look at Figure 2. It has the rules in HA-ness2 at the left, and HA-ness5-trees at
the right; it shows that

[HA-ness5] → [∧1],
[HA-ness5] → [∧2],
[HA-ness5] → [∨1],
[HA-ness5] → [∨2],
[HA-ness5] → [→2],

[HA-ness5] → [HA-ness2],
[HA-ness5] → [HA-ness7],

and it also shows how to take an HA-ness7-tree T and replace every occurrence of
an HA-ness4-rule in it by an HA-ness3-tree, producing an HA-ness3-tree T ′ which is
“equivalent” to T . This means that:

• every HA-ness5-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness5-tree,

and that HA-ness3, HA-ness7 and HA-ness5 are all “equivalent”.

11 Topologies
The best way to connect ZHAs to several standard concepts is by seeing that ZHAs are
topologies on certain finite sets — actually on 2-column acyclical graphs (sec.14). This
will be done here and in the next few sections.

A topology on a set X is a subset U of P(X) that contains the “everything” and the
“nothing” and is closed by binary unions and intersections and by arbitrary unions.
Formally:

1) U contains X and ∅,
2) if P,Q ∈ U then U contains P ∪Q and P ∩Q,
3) if V ⊂ U then U contains

⋃
V .

A topological space is a pair (X,U) where X is a set and U is a topology on X.
When (X,U) is a topological space and U ∈ U we say that U is open in (X,U).
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For example, let X be the ZSet • ••• •, and let’s use the characteristic function notation
from sec.1 to denote its subsets — we write X = 1 1

1
1 1 and ∅ = 0 0

0
0 0 instead of X = • ••• •

and ∅ = · ··· · .
If U =

{1 0
0

0 0,
0 1
0

0 0,
0 0
1

0 0,
0 0
0

1 0,
0 0
0

0 1

}
then U ⊂ P(X) but U fails all the conditions in 1,

2, 3 above:
1) X = 1 1

1
1 1 6∈ U and ∅ = 0 0

0
0 0 6∈ U

2) Let P = 1 0
0

0 0 ∈ U and Q = 0 1
0

0 0 ∈ U . Then P ∩Q = 0 0
0

0 0 6∈ U and P ∪Q = 1 1
0

0 0 6∈ U .
3) Let V =

{0 1
0

0 0,
0 0
1

0 0,
0 0
0

1 0

}
⊂ U . Then

⋃
V = 0 1

0
0 0 ∪

0 0
1

0 0 ∪
0 0
0

1 0 =
0 1
1

1 0 6∈ U .

Now let K =
•

• •
•
•

and U =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
. In this case (K,U) is a

topological space.

Some sets have “default” topologies on them, denoted with ‘O’. For example, R is
often used to mean the topological space (R,O(R)), where:

O(R) = {U ⊂ R | U is a union of open intervals }.

We say that a subset U ⊂ R is “open in R” (“in the default sense”; note that now
we are saying just “open in R”, not “open in (R,O(R))”) when U is a union of open
intervals, i.e., when U ∈ O(R); but note that P(R) and {∅,R} are also topologies on
R, and:

{2, 3, 4} ∈ P(R), so {2, 3, 4} is open in (R,P(R)),
{2, 3, 4} 6∈ O(R), so {2, 3, 4} is not open in (R,O(R)),
{2, 3, 4} 6∈ {∅,R}, so {2, 3, 4} is not open in (R, {∅,R});

when we say just “U is open in X”, this means that:
1) O(X) is clear from the context, and
2) U ∈ O(X).

12 The default topology on a ZSet
Let’s define a default topology O(D) for each ZSet D.

For each ZSet D we define O(D) as:

O(D) := {U ⊂ D | ∀((x, y), (x′, y′)) ∈ BPM(D).

(x, y) ∈ U → (x′, y′) ∈ U }

whose visual meaning is this. Turn D into a ZDAG by adding arrows for the black
pawns moves (sec.2), and regard each subset U ⊂ D as a board configuration in which
the black pieces may move down to empty positions through the arrows. A subset U is
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“stable” when no moves are possible because all points of U “ahead” of a black piece
are already occupied by black pieces; a subset U is “non-stable” when there is at least
one arrow ((x, y), (x′, y′)) ∈ BPM(D) in which (x, y) had a black piece and (x′, y′) is an
empty position.

In our two notations for subsets (sec.1) a subset U ⊂ D is unstable when it has an
arrow like ‘• → ·’ or ‘1 → 0’; remember that black pawn moves arrows go down. A
subset U ⊂ D is stable when none of its ‘•’s or ‘1’s can move down to empty positions.

“Open” is the same as “stable”. O(D) is the set of stable subsets of D.

Some examples:
0

0 1
0
0

is not open because it has a 1 above a 0,

O(
•

• •
•
•
) =

{
0

0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
,

O( •• •• •) =
{

0
0 0
0 0

,
0

0 0
0 1

,
0

0 0
1 0

,
0

0 0
1 1

,
0

0 1
0 1

,
0

0 1
1 1

,
0

1 0
1 0

,
0

1 0
1 1

,
0

1 1
1 1

,
1

1 1
1 1

}
.

The definition of O(D) above can be generalized to any directed graph. If (A,R) is
a directed graph, then (A,OR(A)) is a topological space if we define:

OR(A) := {U ⊆ A | ∀(a, b) ∈ R. (a ∈ U → b ∈ U) }

The two definitions are related as this: O(D) = OBPM(D)(D).
Note that we can see the arrows in BPM(D) or in R as obligations that open sets

must obey; each arrow a → b says that every open set that contains a is forced to
contain b too.

13 Topologies as partial orders
For any topological space (X,O(X)) we can regard O(X) as a partial order, ordered
by inclusion, with ∅ as its minimal element and X as its maximal element; we denote
that partial order by (O(X),⊆).

Take any ZSet D. The partial order (O(D),⊆) will sometimes be a ZHA when we
draw it with ∅ at the bottom, D at the top, and inclusions pointing up, as can be seen
in the three figures below; when D =

•
• •
• • or D = • •• •• • the result is a ZHA, but when

D = • • •• • it is not.
Let’s write “V ⊂1 U” for “V ⊆ U and V and U differ in exactly one point”. When D

is a ZSet the relation ⊆ onO(D) is the transitive-reflexive closure of ⊂1, and (O(D),⊂1)
is easier to draw than (O(D),⊆).
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(H,BPM(H)) =

•
• •
• •

↙ ↘
↓ ↓

(O(H),⊂1) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

(G,BPM(G)) =

• •
• •
• •

↙ ↘ ↙
↘ ↙ ↘

(O(G),⊂1) =

1 11 11 1

1 01 11 1
0 11 11 1

0 01 11 1
0 10 11 1

0 01 01 1
0 00 11 1

0 01 01 0
0 00 01 1

0 00 01 0
0 00 00 1

0 00 00 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗

(W,BPM(W )) =
• • •
• •

↘ ↙ ↘ ↙ (O(W ),⊂1) =

1 1 11 1

1 1 01 1 1 0 11 1 0 1 11 1

1 0 01 1 0 1 01 1 0 0 11 1

1 0 01 0 0 0 01 1 0 0 10 1

0 0 01 0 0 0 00 1

0 0 00 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗
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We can formalize a “way to draw O(D) as a ZHA” (or “...as a ZDAG”) as a bijective
function f from a ZHA (or from a ZSet) S toO(D) that creates a perfect correspondence
between the white moves in S and the “V ⊂1 U -arrows”; more precisely, an f such that
this holds: if a, b ∈ S then (a, b) ∈ WPM(S) iff f(a) ⊂1 f(b).

Note that the number of elements in an open set corresponds to the height where
it is drawn; if f : S → O(D) is a way to draw O(D) as a ZHA or a ZDAG then f takes
points of the form (__, y) to open sets with y elements, and if f : S → O(D) is a way
to draw O(D) as a ZHA (not a ZDAG!) then we also have that f((0, 0)) = ∅ ∈ O(D).

The diagram for (O(H),⊂1) above is a way to draw O(H) as a ZHA.
The diagram for (O(G),⊂1) above is a way to draw O(G) as a ZHA.
The diagram for (O(W ),⊂1) above is not a way to draw O(W ) as a ZSet. Look at

0 1 01 1 and 1 0 11 1 in the middle of the cube formed by all open sets of the form a b c1 1 . We
don’t have 0 1 01 1 ⊂1

1 0 11 1 , but we do have a white pawn move (not draw in the diagram!)
from f−1(0 1 01 1 ) to f−1(1 0 11 1 ). We say that a ZSet is thin when it doesn’t have three
independent points.

Every time that a ZSet D has three independent points, as in W , we will have a
situation like in (O(W ),⊂1); for example, if B = • •• • •• • then the open sets of B of the
form 0 0a b c1 1 form a cube.

14 2-Column Graphs
Note: in this section we will manipulate objects with names like 1_, 2_, 3_, . . . , _1,
_2,_3, . . .; here are two good ways to formalize them:

... ...
4_ = (0, 4) _4 = (1, 4)

3_ = (0, 3) _3 = (1, 3)

2_ = (0, 2) _2 = (1, 2)

1_ = (0, 1) _1 = (1, 1)

or

... ...
4_ = "4_" _4 = "_4"
3_ = "3_" _3 = "_3"
2_ = "2_" _2 = "_2"
1_ = "1_" _1 = "_1"

,

where "1_", "_2", "", "Hello!", etc are strings.
We define:

LC(l) := {1_, 2_, . . . , l_}
RC(r) := {_1,_2, . . . ,_r},

which generate a “left column” of height l and a “right column” of height r.
A description for a 2-column graph (a “D2CG”) is a 4-tuple (l, r, R, L), where l, r ∈

N, R ⊂ LC(l) × RC(r), L ⊂ RC(r) × LC(l); l is the height of the left column, r is the
height of the right column, and R and L are set of intercolumn arrows (going right and
left respectively).
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The operation 2CG (in a sans-serif font) generates a directed graph from a D2CG:

2CG(l, r, R, L) :=

(
LC(l) ∪ RC(r),

{
{l_→(l−1)_, ..., 2_→1_}∪
{_r→_(r−1), ..., _2→_1}∪

R∪L

})
For example,

2CG(3, 4,
{

3_→_4,
2_→_3

}
,
{

2_←_2,
1_←_2

}
) :=

({
3_, 2_, 1_,

_4, _3, _2, _1

}
,

{ 3_→2_, 2_→1_,
_4→_3, _3→_2, _2→_1,

3_→_4, 2_→_3,
2_←_2, 1_←_2

})
which is: 

1_

2_

3_

_1

_2

_3

_4


we will usually draw that more compactly, by omitting the intracolumn (i.e., vertical)
arrows: (

1_
2_
3_

_1
_2
_3
_4
)

or

(
•
•
•

•
•
•
•
)
.

A 2-column graph (a “2CG”) is a directed graph that is of the form 2CG(l, r, R, L).
We will often say (P,A) = 2CG(l, r, R, L), where the P stand for “points” and A for
“arrows”.

A 2-column acyclical graph (a “2CAG”) is a 2CG that doesn’t have cycles. If L
has an arrow that is the opposite of an arrow in R, this generates a cycle of length 2;
if R has an arrow l_→_r′ and L has an arrow l′_←_r, where l ≤ l′ and r ≤ r′, this
generates a cycle that can have a more complex shape — a triangle or a bowtie. For
example, 

1_

2_

3_

4_

_1

_2

_3


and


1_

2_

3_

_1

_2

_3

_4


.

15 Topologies on 2CGs
In this section we will see that ZHAs are topologies on 2CAGs.
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Let (P,A) = 2CG(l, r, R, L) be a 2-column graph.
What happens if we look at the open sets of (P,A), i.e., at OA(P )? Two things:

1) every open set U ∈ OA(P ) is of the form LC(a) ∪ RC(b),
2) arrows in R and L forbids some ‘LC(a) ∪ RC(b)’s from being open sets.

In order to understand that we need to introduce some notations for “piles”.

The function
pile(〈a, b〉) := LC(a) ∪ RC(b)

converts an element 〈a, b〉 ∈ LR into a pile of elements in the left column of height a
and a pile of elements in the right column of height b. We will write subsets of the
points of a 2CG using a positional notation with arrows. So, for example, if (P,A) =
2CG(3, 4, {2_→_3}, {2_←_2}) then

(P,A) =

(
1_
2_
3_

_1
_2
_3
_4
)

and pile(21) =

(
1
1
0

1
0
0
0
)

(as a subset of P ).

Note that pile(21) is not open in (P,OA(P )), as it has an arrow ‘1→ 0’. In fact, the
presence of the arrow {2_→_3} in A means that all piles of the form(

1
1
?

?
?
0
0
)

are not open, the presence of the arrow {2_←_2} means that the piles of the form(
?
0
0

1
1
?
?
)

are not open sets.
The effect of these prohibitions can be expressed nicely with implications. If

(P,A) = 2CG(l, r,
{

c_→_d,
e_→_f

}
,
{

g_←_h,
i_←_j

}
)

then

OA(P ) = { pile(ab) | a ∈ {0, . . . , l}, b ∈ {0, . . . , r},

(
a≥c→ b≥d ∧
a≥e→ b≥f ∧
a≥g← b≥h ∧
a≥i← b≥j

)
}
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Let’s use a shorter notation for comparing 2CGs and their topologies:

O


1_

2_

3_

4_

_1

_2

_3

_4

_5


=

42
43
44

45

32
33

34
35

20
21
22

23
24

25

10
11

12
13

14

00
01
02

03

the arrows in R and L and the values of l and r are easy to read from the 2CG at the
left, and we omit the ‘pile’s at the right.

In a situation like the above we say that the 2CG in the ‘O(. . .)’ generates the ZHA
at the right. There is an easy way to draw the ZHA generated by a 2CG, and a simple
way to find the 2CG that generates a given ZHA. To describe them we need two new
concepts.

If (A,R) is a directed graph and S ⊂ A then ↓S is the smallest open set in OR(A)
that contains S. If (A,R) is a ZDAG with black pawns moves as its arrows, think that
the ‘1’s in S are painted with a black paint that is very wet, and that that paint flows
into the ‘0’s below; the result of ↓S is what we get when all the ‘0’s below ‘1’s get
painted black. For example: ↓ 0 10 00 0 =

0 10 11 1. When (P,A) is a 2CG and S ⊆ P , we have
to think that the paint flows along the arrows, even if some of the intercolumn arrows
point upward. For example:

↓

(
1
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

and if S consists of a single point, S = {s}, then we may write ↓s instead of ↓{s} = ↓S.
In the 2CG above, we have (omitting the ‘pile’s):

↓_2 = ↓{_2} = ↓

(
0
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

= 23, and
↓_4=24,

↓3_=33, ↓_3=23,
↓2_=23, ↓_2=23,
↓1_=10, ↓_1=01,

The second concept is this: the “generators” of a ZDAG D with white pawns moves
as its arrows — or of a ZHA D — are the points of D that have exactly one white pawn
move pointing to them (not going out of them).

If (P,A) is a 2CAG, then OA(P ) is a ZHA, and ‘↓’ is a bijection from P to the
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generators of OA(P ); for example:

O


1_

2_

3_

4_

_1

_2

_3

_4

_5


=

42
43
44

45

32
33

34
35

20
21
22

23
24

25

10
11

12
13

14

00
01
02

03

4_
·
·
·

3_
·
·
·

2_
·
·
·
·
_5

1_
·
·
·
_4

·
_1

_2
_3

but if (P,A) is a 2CG with cycles, thenOA(P ) is not a ZHA because each cycle generates
a “gap” that disconnects the points of OA(P ). We just saw an example of a 2CG with
a cycle in which ↓2_ = 23 = ↓_3 = ↓_2; look at its topology:

O


1_

2_

3_

_1

_2

_3

_4


=

34
33 24
23

11
10 01

00

16 Topologies as Heyting Algebras
The open-set semantics for Intuitionistic Propositional Logic is based on this idea:
choose any topological space (X,O(X)); the opens sets of O(X) will play the role of
truth-values, and we define the components of a Heyting Algebra (sec.8) as this:

Ω := O(X)

P ≤ Q := P ⊆ Q

> := {x ∈ X | > } = X

⊥ := {x ∈ X | ⊥ } = ∅
P ∧Q := {x ∈ X | x ∈ P ∧ x ∈ Q } = P ∩Q

P ∨Q := {x ∈ X | x ∈ P ∨ x ∈ Q } = P ∪Q

P
M→ Q := {x ∈ X | x ∈ P → x ∈ Q }

= {x ∈ X | x 6∈ P ∨ x ∈ Q } = (X\P ) ∪Q

However, this ‘ M→’ may return a non-open result even when given open inputs,
0

1 0
1 0

M→ 0
0 0
1 1

=
1

0 1
1 1
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so our definition is broken; we can fix it by taking the interior:

P → Q := int(P
M→ Q) = int((X\P ) ∪Q)

Theorem 16.1 For any topological space (X,O(X)) the structure (Ω,≤,>,⊥,∧,∨,→)
defined as above is a Heyting Algebra. In particular, this holds for any P,Q,R ∈ Ω:
P ≤ (Q→ R) iff (P ∧Q) ≤ R.

Proof. Standard; see for example [Awo06] (section 6.3). �

Note that Theorem 16.1 gives us another way to calculate the connectives in 2CGs.
In sec.7 we saw how to calculate ¬¬P → P in a certain ZHA when P = 10; compare
it with the “topological” way, in which the truth-values are subsets of •

• •
• •:

¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

→ P︸︷︷︸
10

︸ ︷︷ ︸
12

¬¬ P︸︷︷︸
0

0 0
1 0︸ ︷︷ ︸
0

0 1
0 1︸ ︷︷ ︸
0

1 0
1 0

→ P︸︷︷︸
0

0 0
1 0

︸ ︷︷ ︸
0

0 1
1 1

17 Converting between ZHAs and 2CAGs
Let’s now see how to start from a 2CAG and produce its topology (a ZHA) quickly,
and how to find quickly the 2CAG that generates a given ZHA.

From 2CAGs to ZHAs. Let (P,A) = 2CG(l, r, R, L) be a 2CAG, and call the ZHA
generated by it H. Then the top point of H is lr, and its bottom point is 00. Let
C := {00, ↓1_, ↓2_, . . . , ↓l_, lr}, i.e., the left generators (see the end of sec.15) plus ⊥
and >; then C has some of the points of the left wall (sec.4) of H, but usually not all.
To “complete” C, apply this operation repeatedly: if ab ∈ C and ab 6= lr, then test if
either (a+1)b or a(b+1) are in C; if none of them are, add a(b+1), which is northeast
of ab. When there is nothing else to add, then C is the whole of the left wall of H. For
the right wall, start with D := {00, ↓_1, ↓_2, . . . , ↓_r, lr}, and for each ab ∈ C with
ab 6= lr, test if either (a + 1)b or a(b + 1) are in D; if none of them are, add (a + 1)b,
which is northwest of ab. When there is nothing else to add, then D is the whole of the
right wall of H.
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In the acyclic example of the last section this yields:

C = {00, ↓1_, ↓2_, ↓3_, ↓4_, lr}
= {00, 10, 20, 32, 42, 45}
 {00, 10, 20, 21, 22, 32, 42, 43, 44, 45},

D = {00, ↓_1, ↓_2, ↓_3, ↓_4, ↓_5, lr}
= {00, 01, 02, 03, 14, 25, 45}
 {00, 01, 02, 03, 13, 14, 24, 25, 35, 45}.

and the ZHA is everything between the “left wall” C and the “right wall” D.

From ZHAs to 2CAGs. Let H be a ZHA and let lr be its top point. Form the
sequence of its left wall generators (the generators of H in which the arrow pointing
to them points northwest) and the sequence of its right wall generators (the generators
of H in which the arrow pointing to them points northeast). Look at where there are
“gaps” in these sequences; each gap in the left wall generators becomes an intercolumn
arrow going right, and each gap in the right wall generators becomes an intercolun
arrow going left. In the acyclic example of the last section, this yields:

_5 = 25

(gap becomes 2_←_5)
4_ = 42 _4 = 14

(no gap) (gap becomes 1_←_4)
3_ = 32 _3 = 03

(gap becomes 3_→_2) (no gap)
2_ = 20 _2 = 02

(no gap) (no gap)
1_ = 10 _1 = 01

We know l and r from the top point of the ZHA, and from the gaps we get R and L;
the 2CAG that generates this ZHA is:

(4, 5,
{
3_→_2

}
,

{
2_←_5,

1_←_4

}
).

Theorem 17.1 The two operations above are inverse to one another in the following
sense. If we start with a ZHA H, produce its 2CAG, and produce a ZHA H ′ from
that, we get the same ZHA: H ′ = H. In the other direction, if we start with a 2CAG
(P,A) = 2CG(l, r, R, L), produce its ZHA, H, and then obtain a 2CAG (P ′, A′) =
2CG(l′, r′, R′, L′) from H, we get back the original 2CAG if and only if it didn’t have
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any superfluous arrows; if the original 2CAG had superflous arrows then then new 2CAG
will have l′ = l, r′ = r, and R′ and L′ will be R and L minus these “superfluous arrows”,
that are the ones that can be deleted without changing which 2-piles are forbidden. For
example: 

1_

2_

3_

4_

_1

_2

_3

_4

 

44

32
33

34

22
23

24

10
11

12
13
14

00
01

02
03

04  


1_

2_

3_

4_

_1

_2

_3

_4


In this case we have R =

{ 4_→_4,
4_→_3,
3_→_2,
2_→_2

}
and R′ =

{
4_→_4,
2_→_2

}
.

18 ZHA Logic is between IPL and CPL
Let S be this sentence:

SP := P → (Q ∨R)

SQ := Q→ (R ∨ P )

SR := R→ (P ∨Q)

S := SP ∨ SQ ∨ SR

S can’t be an intuitionistic theorem because in this Heyting Algebra, with these
values for P , Q, R,

(W,A) =
1

2 3 4
↙ ↓↘ (OA(W ),⊂1) =

1
111

0
111

0
110

0
101

0
011

0
100

0
010

0
001

0
000

↑

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↖ ↑ ↗

P = 0
100

Q = 0
010

R = 0
001

we have S = 0
111 6= > = 1

111.
One way to define a valuation for a sentence S with variables Vars(S) — in our

example we have Vars(S) = {P,Q,R}) — is as a pair made of a Heyting Algebra H
and a function v : Vars(S) → H. A looser definition is that a valuation for S is a pair



32 E. Ochs

made of 1) something that generates a Heyting Algebra in a known, canonical way, and
2) a function from Vars(S) to the elements of that HA. So:

A classical valuation for S is a valuation of the form ({0, 1}, v).
A ZHA-valuation for S is a valuation of the form (H, v), where H is a ZHA.
A finite DAG-valuation for S is a valuation of the form ((W,A), v), where W is a

finite set and A ⊆ W ×W is a set of arrows on W ; the Heyting Algebra on (W,OA(W ))
is built as in sec.16.

A 2CG-valuation for S is a finite DAG-valuation for S of the form ((P,A), v), where
(P,A) is a 2-column graph; each 2CG-valuation is naturally equivalent to a ZHA-
valuation, and vice-versa.

A classical countermodel for S is classical valuation for S in which the value of S
is not >; a ZHA-countermodel for S is a ZHA-valuation for S in which the value of S
is not >; an intuitionistic countermodel for S is a finite DAG-valuation for S in which
the value of S is not >.

A sentence S is a classical tautology (notation: S ∈ Taut(CPL)) if S has no classical
countermodels; a sentence S is a ZHA-tautology (notation: S ∈ Taut(ZHAL)); and a
sentence S is an intuitionistic tautology (notation: S ∈ Taut(IPL)) of S has no finite-
DAG countermodels.

It is a standard result that the intuitionistic theorems are exactly the finite-DAG
tautologies; this can be seen using Gödel translation (see [Göd86] and [Tro86]) to trans-
late S to S4, and then using modal tableaux for S4 ([Fit72]) to look for a countermodel;
in standard terminology, W is a set of “worlds”, A is an “accessibility relation” or a
notion of which worlds are “ahead” of which other ones, and (W,A∗) is a Kripke frame
for S4.

The sentence S = SP ∨ SQ ∨ SR of the beginning of the section is a good example
for introducting tableau methods for modal logics to “children”, as the tableau that it
generates doesn’t have branches. We can present the method directly and in elementary
terms, as we will do now.

Fix a set W and a relation A ⊆ W ×W . We will say that β is “ahead” of α when
(α, β) ∈ A∗, i.e., when there is a path α→ . . .→ β using only arrows in A. Let P and
Q be open sets in OA(W ). The only way to have P ∨ Q false in a world α (notation:
(P ∨ Q)α = 0) is to have Pα = 0 and Qα = 0. The only way to have P → Q false in
a world α, i.e., (P → Q)α = 0 is to have Pβ = 1 and Qβ = 0 in some world β, with β
ahead of α.

Let ((W,A), v) be a finite DAG-countermodel for S = SP ∨ SQ ∨ SR. Then v(P ),
v(Q), v(R) ∈ OA(W ); we will omit the ‘v’s. If ((W,A), v) is a countermodel this means
that S 6= >, and there is some world α in W in which Sα = 0. Fix this α. Sα = 0
means (SP ∨ SQ ∨ SR)α = 0, which means that (SP )α = 0, (SQ)α = 0, and (SR)α = 0.
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(SP )α = 0 means (P → (Q ∨ R))α = 0, which means that there is a world β ahead of
α in which Pβ = 1 and (Q ∨ R)β = 0, and (Q ∨ R)β = 0 means Qβ = 0 and Rβ = 0;
similarly, (SQ)α = 0 means that there is a world γ ahead of α in which Qγ = 1, Rγ = 0,
Pγ = 0, and (SR)α = 0 means that there is a world δ ahead of α in which Rδ = 1,
Pδ = 0, Qδ = 0. In diagrams:

α

β
����
��
��
�
α

γ
��

α

δ
��?

??
??

??

Sα = 0

(SP )α = (P → (Q ∨R))α = 0

(SQ)α = (Q→ (R ∨ P ))α = 0

(SR)α = (R→ (P ∨Q))α = 0

Pβ = 1

(Q ∨R)β = 0

Qβ = 0

Rβ = 0

����
��
��
�

Sα = 0

(SP )α = (P → (Q ∨R))α = 0

(SQ)α = (Q→ (R ∨ P ))α = 0

(SR)α = (R→ (P ∨Q))α = 0

Qγ = 1

(R ∨ P )γ = 0

Rγ = 0

Pγ = 0

��

Sα = 0

(SP )α = (P → (Q ∨R))α = 0

(SQ)α = (Q→ (R ∨ P ))α = 0

(SR)α = (R→ (P ∨Q))α = 0

Rδ = 1

(P ∨Q)δ = 0

Pδ = 0

Qδ = 0

��?
??

??
??

Note that β and γ are “independent” in the sense that in A∗ we can’t have an arrow
β → γ and neither an arrow γ → β; we can’t have β → γ because Pβ = 1 but Pγ = 0,
and we can’t have γ → β because Qγ = 1 but Qβ = 0. We can use a similar argument
to show that γ and δ are independent, and to show also that δ and β are independent.

We can’t have three independent points in a 2-column graph, so we have finite DAG-
countermodels for S but no 2CG-countermodels for S, and so no ZHA-countermodels for
S. This means that S is not an intuitionistic tautology, but it is a ZHA-tautology. It is
easy to see that Taut(IPL) ⊂ Taut(ZHAL) ⊂ Taut(CPL), and we saw that S 6∈ Taut(IPL),
S ∈ Taut(ZHAL), (¬¬P → P ) 6∈ Taut(ZHAL), (¬¬P → P ) ∈ Taut(IPL), which means
that:

Taut(IPL) ( Taut(ZHAL) ( Taut(CPL)

and so “ZHA Logic”, which we have not defined via a deduction system, only by the no-
tions of “ZHA countermodels” and “ZHA tautologies”, is strictly between Intuitionistic
Logic and Classical Logic, and is different from both.

It may be possible to axiomatize our “ZHA Logic” as a “logic of width 2” using the
ideas from [WZ07], pp.449–450, but I have not attempted to do that yet.
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