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Abstract

This paper shows a way to interpret (propositional) intuitionistic logic visually
using finite Planar Heyting Algebras (that we call “ZHAs”), that are certain
subsets of Z2. We also show the connection between ZHAs and the familiar
semantics for IPL where the truth-values are open sets in a finite topological
space (P,O(P )): every ZHA is an “order topology on a 2-column graph”.

In the second part of the paper we show how each closure operator J : H → H
on a ZHA H ⊆ Z2 corresponds to a) a way to “slash” H using diagonal cuts, and
b) a choice of a subset S ⊆ P ; J can then be recovered from the inclusion f : S →
P as a restriction map f∗ : O(P )→ O(S) followed by a map f∗ : O(S)→ O(P )
that reconstructs the missing information “in the biggest way possible”.

When a mathematical paper is written “for children” this means either that
it is written for people without lots of mathematical knowledge or that it doesn’t
require mathematical maturity; we follow the second, stronger, meaning of the
term. “Children” for us means people who are not able to understand structures
that are too abstract straight away, they need particular cases first — and they
also have trouble with infinite objects, and with theorems about things that they
can’t calculate: calculating is much more basic for them than proving. Writing
“for children” makes us enforce a style where everything is constructive and finite
and all the main examples are objects that are easy to draw explicitly.

Closure operators on Heyting Algebras are very important on Topos Theory:
they generate geometric morphisms and sheaves. This paper introduces several
tools that can be used to explain some parts of Topos Theory to “children”, but
here we stop just before categories and toposes — when we move to categories
and (pre)sheaves we have to replace most of the ‘0’s and ‘1’s in our diagrams by
sets.

Keywords: Heyting Algebras, Intuitionistic Logic, diagrammatic reasoning, geometric
morphisms.
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Introduction
This paper shows a way to interpret (propositional) intuitionistic logic visually (sec.8)
using finite Planar Heyting Algebras (“ZHAs”, sec.5), that are certain subsets of Z2.
The “for children” of the title means “for people without mathematical maturity”
(sec.1).

In sections 12–19 we show the connection between ZHAs and the familiar semantics
for IPL where the truth-values are open sets in a topological space (P,O(P )), and in
sections 20–36 we discuss how each closure operator on a ZHA H ⊆ Z2 corresponds to
a way to “slash” H using diagonal cuts; in sections 37–42 we show how each closure
operator correspond to a subset S ⊆ P , or rather to a restriction map O(P ) → O(S)
followed by a map O(S) → O(P ) that reconstructs the missing information “in the
biggest way possible”.

1 Children
The “children” in the title of this paper means: “people without mathematical ma-
turity”. “Children” in this sense are not able to understand structures that are too
abstract straight away, they need particular cases first; and they also don’t deal well
with infinite objects or with expressions like “for every proposition P (x)”, or even with
theorems...

In my experience what works best with “children” is to teach them first that “basic
mathematical objects” are things built from numbers, sets, and lists — like this (our
first logic!):

CL = (Ω,>,⊥,∧,∨,→,↔,¬) =( {
0,
1

}
,1,0,


((0,0),0),
((0,1),0),
((1,0),0),
((1,1),1)

,


((0,0),0),
((0,1),1),
((1,0),1),
((1,1),1)

,


((0,0),1),
((0,1),1),
((1,0),0),
((1,1),1)

,


((0,0),1),
((0,1),0),
((1,0),0),
((1,1),1)

,

{
(0,1),
(1,0)

}) ,

and then teach them how to calculate with functions, set comprehension, quantification
and λ-notation when the domains are all finite; only after they acquire some practice,
speed and intuition about calculations we can state some theorems as propositions
whose results can be calculated by brute force, and then discuss why some of these
propositions-theorems always yield “true”.

Except for two last sections all the rest of this paper has been written to be read-
able by “children” in the sense above, and huge parts of it have been tested on “real
children” of mainly two kinds: a group of “older children”, who are Computer Science
students who had already completed a course on Discrete Mathematics, and some “little
children”, who are friends of mine who are students of Psychology or Social Sciences.
The text has benefited enormously from they feedback — especially their puzzled looks
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at some points, that made me modify my presentation and the exercises I was giving to
them. Those exercises are not included here, though, and neither the rationale behind
most style decisions.

2 Positional notations
Definition: a ZSet is a finite, non-empty subset of N2 that touches both axes, i.e., that
has a point of the form (0,__) and a point of the form (__, 0). We will often represent
ZSets using a bullet notation, with or without the axes and ticks. For example:

K =

{
(1,3),

(0,2), (2,2),
(1,1),
(1,0)

}
= =

We will use the ZSet above a lot in examples, so let’s give it a short name: K
(“kite”).

The condition of touching both axes is what lets us represent ZSets unambiguously
using just the bullets:

  =(

  =)

We can use a positional notation to represent functions from a ZSet. For example,
if

f : K → N
(x, y) 7→ x

then

f =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

We will sometimes use λ-notation to represent functions compactly. For example:

λ(x, y):K.x =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

λ(x, y):K.y =

{
((1,3),3),

((0,2),2), ((2,2),2),
((1,1),1),
((1,0),0)

}
=

3
2 2
1
0



4 E. Ochs

The “reading order” on the points of a ZSet S “lists” the points of S starting from
the top and going from left to right in each line. More precisely, if S has n points then
rS : S → {1, . . . , n} is a bijection, and for example:

rK =
1

2 3
4
5

Subsets of a ZSet are represented with a notation with ‘•’s and ‘·’, and partial
functions from a ZSet are represented with ‘·’s where they are not defined. For example:

•
· •
•
·

1
· 3
4
·

The characteristic function of a subset S ′ of a ZSet S is the function χS′ : S → {0, 1}
that returns 1 exactly on the points of S ′; for example, 1

0 1
1
0

is the characteristic function
of •· ••·

⊂ •• •••
. We will sometimes denote subsets by their characteristic functions because

this makes them easier to “pronounce” by reading aloud their digits in the reading order
— for example, 1

0 1
1
0

is “one-zero-one-one-zero” (see sec.13).

3 ZDAGs
We will sometimes use the bullet notation for a ZSet S as a shorthand for one of the
two DAGs induced by S: one with its arrows going up, the other one with them going
down. For example: sometimes

•• •••
will stand for:

•
• •
•
•

↙ ↘
↘ ↙
↓

=

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘
↘ ↙
↓

=

({
(1,3),

(0,2), (2,2),
(1,1),
(0,0)

}
,

{
((1,3),(0,2)),((1,3),(2,2)),
((0,2),(1,1)),((2,2),(1,1)),

((1,1),(0,0))

})

Let’s formalize this.
Consider a game in which black and white pawns are placed on points of Z2, and

they can move like this:
•
↙↓↘
• • •

◦ ◦ ◦
↖↑↗
◦

Black pawns can move from (x, y) to (x+ k, y − 1) and white pawns from (x, y) to
(x + k, y + 1), where k ∈ {−1, 0, 1}. The mnemonic is that black pawns are “solid”,
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and thus “heavy”, and they “sink”, so they move down; white pawns are “hollow”, and
thus “light”, and they “float”, so they move up.

Let’s now restrict the board positions to a ZSet S. Black pawns can move from (x, y)
to (x + k, y − 1) and white pawns from (x, y) to (x + k, y + 1), where k ∈ {−1, 0, 1},
but only when the starting and ending positions both belong to S. The sets of possible
black pawn moves and white pawn moves on S can be defined formally as:

BPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y − 1 }
WPM(S) = { ((x, y), (x′, y′)) ∈ S2 | x− x′ ∈ {−1, 0, 1}, y′ = y + 1 }

...and now please forget everything else you expect from a game — like starting position,
capturing, objective, winning... the idea of a “game” was just a tool to let us explain
BPM(S) and WPM(S) quickly.

A ZDAG is a DAG of the form (S,BPM(S)) or (S,WPM(S)), where S is a ZSet.
A ZPO is partial order of the form (S,BPM(S)∗) or (S,WPM(S)∗), where S is a

ZSet and the ‘∗’ denotes the transitive-reflexive closure of the relation.

Sometimes, when this is clear from the context, a bullet diagram like •• ••• will stand
for either the ZDAGs ( •• ••• ,BPM(

•• ••• )) or ( •• ••• ,WPM(
•• ••• )), or for the ZPOs ( •• ••• ,BPM(

•• ••• )
∗)

or (
•• ••• ,WPM(

•• ••• )
∗) (sec.5).

4 LR-coordinates
The lr-coordinates are useful for working on quarter-plane of Z2 that looks like N2 turned
45◦ to the left. Let 〈l, r〉 := (−l+ r, l+ r); then (the bottom part of) { 〈l, r〉 | l, r ∈ N }
is:

〈4, 0〉 〈3, 1〉 〈2, 2〉 〈1, 3〉 〈0, 4〉

〈3, 0〉 〈2, 1〉 〈1, 2〉 〈0, 3〉

〈2, 0〉 〈1, 1〉 〈0, 2〉

〈1, 0〉 〈0, 1〉

〈0, 0〉

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Sometimes we will write lr instead of 〈l, r〉. So:

40 31 22 13 04

30 21 12 03

20 11 02

10 01

00

=

(−4, 4) (−2, 4) (0, 4) (2, 4) (4, 4)

(−3, 3) (−1, 3) (1, 3) (3, 3)

(−2, 2) (0, 2) (2, 2)

(−1, 1) (1, 1)

(0, 0)

Let LR = { 〈l, r〉 | l, r ∈ N }.
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5 ZHAs
A ZHA is a subset of LR “between a left and a right wall”, as we will see.

A triple (h, L,R) is a “height-left-right-wall” when:
1) h ∈ N
2) L : {0, . . . , h} → Z and R : {0, . . . , h} → Z
3) L(h) = R(h) (the top points of the walls are the same)
4) L(0) = R(0) = 0 (the bottom points of the walls are the same, 0)
5) ∀y ∈ {0, . . . , h}. L(y) ≤ R(y) (“left” is left of “right”)
6) ∀y ∈ {1, . . . , h}. L(y)− L(y − 1) = ±1 (the left wall makes no jumps)
7) ∀y ∈ {1, . . . , h}. R(y)−R(y − 1) = ±1 (the right wall makes no jumps)
The ZHA generated by a height-left-right-wall (h, L,R) is the set of all points of

LR with valid height and between the left and the right walls. Formally:

ZHAG(h, L,R) = { (x, y) ∈ LR | y ≤ h, L(y) ≤ x ≤ R(y) }.
A ZHA is a set of the form ZHAG(h, L,R), where the triple (h, L,R) is a height-

left-right-wall.
Here is an example of a ZHA (with the white pawn moves on it):

(−4, 8)
(−3, 9)

(−3, 7)
(−2, 8)

(−2, 6)

(−3, 3)
(−2, 4)

(−1, 5)

(−2, 2)
(−1, 3)

(0, 4)

(−1, 1)
(0, 2)

(1, 3)

(0, 0)

(1, 1)

↗ ↖
↖ ↗
↖
↖
↗ ↖

↗ ↖ ↗ ↖
↖ ↗ ↖ ↗
↖ ↗ ↖
↖ ↗

L(0) = 0 R(0) = 0

L(1) = −1 R(1) = 1

L(2) = −2 R(2) = 0

L(3) = −3 R(3) = 1

L(4) = −2 R(4) = 0

L(5) = −1 R(5) = −1
L(6) = −2 R(6) = −2
L(7) = −3 R(7) = −3
L(8) = −4 R(8) = −2
L(9) = −3 R(9) = −3 h = 9L(9) = R(9)

L(0) = R(0) = 0

We will see later (section 8) that ZHAs (with white pawn moves) are Heyting Al-
gebras.

6 Conventions on diagrams without axes
We can use a bullet notation to denote ZHAs, but look at what happens when we start
with a ZHA, erase the axes, and then add the axes back using the convention from
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sec.2:

  

The new, restored axes are in a different position — the bottom point of the original
ZHA at the left was (0, 0), but in the ZSet at the right the bottom point is (2, 0).

The convention from sec.2 is not adequate for ZHAs.
Let’s modify it!
From this point on, the convention on where to draw the axes will be this one: when

it is clear from the context that a bullet diagram represents a ZHA, then its (unique)
bottom point has coordinate (0, 0), and we use that to draw the axes; otherwise we
apply the old convention, that chooses (0, 0) as the point that makes the diagram fit in
N2 and touch both axes.

The new convention with two cases also applies to functions from ZHAs, and to
partial functions and subsets. For example:

B =
•

••
•

••
•

••
• (a ZHA) λ(x, y):B.x =

-1

-2-1
0

-101

012

λ〈l, r〉:B.l =
3

2
2
2

1
1
1

0
0
0 λ〈l, r〉:B.r =

2

0
1
2

0
1
2

0
1
2

We will often denote ZHAs by the identity function on them:

λ〈l, r〉:B.〈l, r〉 = λlr:B.lr =

32

20
21
22

10
11
12

00
01
02 B =

32

20
21
22

10
11
12

00
01
02

Note that we are using the compact notation from the end of section 4: ‘lr’ instead of
‘〈l, r〉’.

7 Propositional calculus
A PC-structure is a tuple

L = (Ω,≤,>,⊥,∧,∨,→,↔,¬),

where:
Ω is the “set of truth values”,
≤ is a relation on Ω,
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> and ⊥ are two elements of Ω,
∧, ∨, →, ↔ are functions from Ω× Ω to Ω,
¬ is a function from Ω to Ω.

Classical Logic “is” a PC-structure, with Ω = {0, 1}, > = 1, ⊥ = 0, ≤= {(0, 0), (0, 1),
(1, 0)}, ∧ =

{
((0,0),0),((0,1),0),
((1,0),0),((1,1),1)

}
, etc.

PC-structures let us interpret expressions from Propositional Calculus (“PC-expressions”),
and let us define a notion of tautology. For example, in Classical Logic,

• ¬¬P ↔ P is a tautology because it is valid (i.e., it yields >) for all values of P
in Ω,

• ¬(P ∧ Q) → (¬P ∨ ¬Q) s a tautology because it is valid for all values of P and
Q in Ω,

• but P ∨Q→ P ∧Q is not a tautology, because when P = 0 and Q = 1 the result
is not >:

P︸︷︷︸
0

∨ Q︸︷︷︸
1︸ ︷︷ ︸

1

→ P︸︷︷︸
0

∧ Q︸︷︷︸
1︸ ︷︷ ︸

0︸ ︷︷ ︸
0
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8 Propositional calculus in a ZHA
Let Ω be the set of points of a ZHA and ≤ the default partial order on it. The default
meanings for >,⊥,∧,∨,→,↔,¬ are these ones:

〈a, b〉 ≤ 〈c, d〉 := a ≤ c ∧ b ≤ d

〈a, b〉 ≥ 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 above 〈c, d〉 := a ≥ c ∧ b ≥ d

〈a, b〉 below 〈c, d〉 := a ≤ c ∧ b ≤ d

〈a, b〉 leftof 〈c, d〉 := a ≥ c ∧ b ≤ d

〈a, b〉 rightof 〈c, d〉 := a ≤ c ∧ b ≥ d

valid(〈a, b〉) := 〈a, b〉 ∈ Ω

ne(〈a, b〉) := if valid (〈a, b+ 1〉) then ne(〈a, b+ 1〉) else 〈a, b〉 end
nw(〈a, b〉) := if valid (〈a+ 1, b〉) then nw(〈a+ 1, b〉) else 〈a, b〉 end

〈a, b〉 ∧ 〈c, d〉 := 〈min(a, c),min(b, d)〉
〈a, b〉 ∨ 〈c, d〉 := 〈max(a, c),max(b, d)〉

〈a, b〉 → 〈c, d〉 := if 〈a, b〉 below 〈c, d〉 then >
elseif 〈a, b〉 leftof 〈c, d〉 then ne(〈c, d〉)
elseif 〈a, b〉 rightof 〈c, d〉 then nw(〈c, d〉)
elseif 〈a, b〉 above 〈c, d〉 then 〈c, d〉
end

> := sup(Ω)

⊥ := 〈0, 0〉
¬〈a, b〉 := 〈a, b〉 → ⊥

〈a, b〉 ↔ 〈c, d〉 := (〈a, b〉 → 〈c, d〉) ∧ (〈c, d〉 → 〈a, b〉)

Let Ω be the ZHA at the top left in the figure below. Then, with the default
meanings for the connectives neither ¬¬P → P nor ¬(P ∧ Q) → (¬P ∨ ¬Q) are
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tautologies, as there are valuations that make them yield results different than > = 32:

32

20
21
22

10
11
12

00
01
02

>
·
· →

P ′′ · P ′
P ·
⊥

(¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

)→ P︸︷︷︸
10

︸ ︷︷ ︸
12

>
∨
· ·

Q′ · P ′
P Q
∧

¬( P︸︷︷︸
10

∧ Q︸︷︷︸
01︸ ︷︷ ︸

00

)

︸ ︷︷ ︸
32

→ (¬ P︸︷︷︸
10︸ ︷︷ ︸

02

∨¬ Q︸︷︷︸
01︸ ︷︷ ︸

20︸ ︷︷ ︸
22

)

︸ ︷︷ ︸
22

So: some classical tautologies are not tautologies in this ZHA.
The somewhat arbitrary-looking definition of ‘→’ will be explained at the end of

the next section.

9 Heyting Algebras
A Heyting Algebra is a PC-structure

H = (Ω,≤H ,>H ,⊥H ,∧H ,∨H ,→H ,↔H ,¬H),

in which:
1) (Ω,≤H) is a partial order
2) >H is the top element of the partial order
3) ⊥H is the bottom element of the partial order
4) P ↔H Q is the same as (P →H Q) ∧H (Q→H P )
5) ¬HP is the same as P →H ⊥H

6) ∀P,Q,R ∈ Ω. (P ≤H (Q ∧H R))↔ ((P ≤H Q) ∧ (P ≤H R))
7) ∀P,Q,R ∈ Ω. ((P ∨H Q) ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8) ∀P,Q,R ∈ Ω. (P ≤H (Q→H R))↔ ((P ∧H Q) ≤H R)
6’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y )↔ ((P ≤H Q) ∧ (P ≤H R))
7’) ∀P,Q ∈ Ω.∃!X ∈ Ω.∀R ∈ Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))
8’) ∀Q,R ∈ Ω.∃!Y ∈ Ω.∀P ∈ Ω. (P ≤H Y )↔ ((P ∧H R) ≤H R)

The conditions 6’, 7’, 8’ say that there are unique elements in Ω that “behave as”
Q∧H R, P ∨H Q and Q→H R for given P , Q, R; the conditions 6,7,8 say that Q∧H R,
P ∨H Q and Q→H R are exactly the elements with this behavior.
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The positional notation on ZHAs is very helpful for visualizing what the conditions
6’,7’,8’,6,7,8 mean. Let Ω be the ZDAG on the left below:

40
41
42
43
44

30
31
32
33
34

20
21
22
23
24

10
11
12
13
14

00
01
02
03
04

>
· ·
· · ·
· · · (→)
· Q · · ·
· · R ·
· (∧) ·
· ·
⊥

>
· ·
· · ·
· (∨) · ·
· P · · ·
· · Q ·
· · ·
· ·
⊥

we will see that
a) if Q = 31 and R = 12 then Q ∧H R = 11,
b) if P = 31 and Q = 12 then P ∨H Q = 32,
c) if Q = 31 and R = 12 then Q→H R = 14.
Let’s see each case separately — but, before we start, note that in 6, 7, 8, 6’, 7’, 8’

we work part with truth values in Ω and part with standard truth values. For example,
in 6, with P = 20, we have:

( P︸︷︷︸
20

≤H ( Q︸︷︷︸
31

∧H R︸︷︷︸
12︸ ︷︷ ︸

11

)

︸ ︷︷ ︸
0

)↔ (( P︸︷︷︸
20

≤H Q︸︷︷︸
31︸ ︷︷ ︸

1

) ∧ ( P︸︷︷︸
20

≤H R︸︷︷︸
12︸ ︷︷ ︸

0

)

︸ ︷︷ ︸
0

)

︸ ︷︷ ︸
1

a) Let Q = 31 and R = 12. We want to see that Q ∧H R = 11, i.e., that

∀P ∈ Ω. (P ≤H Y )↔ ((P ≤H Q) ∧ (P ≤H R))

holds for Y = 11 and for no other Y ∈ Ω. We can visualize the behavior of P ≤H Q
for all ‘P ’s by drawing λP :Ω.(P ≤H Q) in the positional notation; then we do the
same for λP :Ω.(P ≤H R) and for λP :Ω.((P ≤H Q) ∧ (P ≤H R)). Suppose that the
full expression, ‘∀P :Ω.___’, is true; then the behavior of the left side of the ‘↔’,
λP :Ω.(P ≤H Y ), has to be a copy of the behavior of the right side, and that lets us
find the only adequate value for Y .

The order in which we calculate and draw things is below, followed by the results
themselves:

(P ≤H Y︸︷︷︸
(7)︸ ︷︷ ︸

(6)

)↔ ((P ≤H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ∧ (P ≤H R︸︷︷︸
(2)︸ ︷︷ ︸

(4)

)

︸ ︷︷ ︸
(5)

)
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(P ≤H Y︸︷︷︸
11︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)↔ ((P ≤H Q︸︷︷︸
31︸ ︷︷ ︸

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

1
1
0
0
0

) ∧ (P ≤H R︸︷︷︸
12︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
0
0

1
1
1
0
0

)

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
0
0
0

1
1
0
0
0

)

b) Let P = 31 and Q = 12. We want to see that P ∨H Q = 32, i.e., that

∀R:Ω. (X ≤H R)↔ ((P ≤H R) ∧ (Q ≤H R))

holds for X = 32 and for no other X ∈ Ω. We do essentially the same as we did in (a),
but now we calculate λR:Ω.(P ≤H R), λR:Ω.(Q ≤H R), and λR:Ω.((P ≤H R)∧ (Q ≤H

R)). The order in which we calculate and draw things is below, followed by the results
themselves:

( X︸︷︷︸
(7)

≤H R

︸ ︷︷ ︸
(6)

)↔ (( P︸︷︷︸
(1)

≤H R

︸ ︷︷ ︸
(3)

) ∧ ( Q︸︷︷︸
(2)

≤H R

︸ ︷︷ ︸
(4)

)

︸ ︷︷ ︸
(5)

)

( X︸︷︷︸
32

≤H R︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)↔ (( P︸︷︷︸
31

≤H R︸ ︷︷ ︸
0
1
1
1
1

0
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

) ∧ ( Q︸︷︷︸
12

≤H R

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

)

︸ ︷︷ ︸
0
0
1
1
1

0
0
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

)

c) Let Q = 31 and R = 12. We want to see that Q→H R = 14, i.e., that

∀P :Ω. (P ≤H Y )↔ ((P ∧H Q) ≤H R)

holds for Y = 14 and for no other Y ∈ Ω. Here the strategy is slightly different. We
start by visualizing λP :Ω.(P ∧H Q), which is a function from Ω to Ω, not a function
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from Ω to {0, 1} like the ones we were using before. The order in which we calculate
and draw things is below, followed by the results:

(P ≤H Y︸︷︷︸
(6)︸ ︷︷ ︸

(5)

)↔ ((P ∧H Q︸︷︷︸
(1)︸ ︷︷ ︸

(3)

) ≤H R︸︷︷︸
(2)

︸ ︷︷ ︸
(4)

)

(P ≤H Y︸︷︷︸
14︸ ︷︷ ︸

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)↔ ((P ∧H Q︸︷︷︸
31︸ ︷︷ ︸

30
31
31
31
31

30
31
31
31
31

20
21
21
21
21

10
11
11
11
11

00
01
01
01
01

) ≤H R︸︷︷︸
12

︸ ︷︷ ︸
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

)

10 The two implications are equivalent
In sec.8 we gave a definition of ‘→’ that is easy to calculate, and in sec.9 we saw a way
to find by brute force1 a value for Q→ R that obeys

(P ≤ (Q→ R))↔ (P ≤ Q ∧R)

for all P . In this section we will see that these two operations — called ‘ C→’ and ‘HA→’
from here on — always give the same results.

Theorem 10.1 We have (Q
C→ R) = (Q

HA→ R), for any ZHA H and Q,R ∈ H.

The proof will take the rest of this section, and our approach will be to check that
for any ZHA H and Q,R ∈ H this holds, for all P ∈ H:

(P ≤ (Q
C→ R))↔ (P ≤ Q ∧R).

In ‘ C→’ the order of the cases is very important. For example, if cd = 21 and ef = 23
then both “cd below ef” and “cd leftof ef” are true, but “cd below ef” takes precedence

1“When in doubt use brute force” — Ken Thompson
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and so cd
C→ ef = >. We can fix this by creating variants of below, leftof, righof and

above that make the four cases disjoint. Abbreviating below, leftof, righof and above as
b, l, r and a, we have:

cd b ef := c ≤ e ∧ d ≤ f cd b′ ef := c ≤ e ∧ d ≤ f

cd l ef := c ≤ e ∧ d ≥ f cd l′ ef := c ≤ e ∧ d > f

cd r ef := c ≥ e ∧ d ≤ f cd r′ ef := c > e ∧ d ≤ f

cd a ef := c > e ∧ d > f cd a′ ef := c > e ∧ d > f

visually the regions are these, for R fixed:

R

Q a′ R

Q b′ R

Q l′ R Q r′ R

We clearly have:

Q
C→ R =


if Q bR then >
elseif Q lR then ne(R)

elseif Q r R then nw(R)

elseif Q aR then R

end

 =


if Q b′ R then >
elseif Q l′ R then ne(R)

elseif Q r′ R then nw(R)

elseif Q a′ R then R

end


and P ≤ Q

C→ R can be expressed as a conjunction of the four cases:

((P ≤ Q
C→ R)↔ (P ∧Q ≤ R))

↔


Q b′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ Q

C→ R)↔ (P ∧Q ≤ R))



↔


Q b′ R→ ((P ≤ >)↔ (P ∧Q ≤ R)) ∧
Q l′ R→ ((P ≤ ne(R))↔ (P ∧Q ≤ R)) ∧
Q r′ R→ ((P ≤ nw(R))↔ (P ∧Q ≤ R)) ∧
Q a′ R→ ((P ≤ R)↔ (P ∧Q ≤ R))


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Let’s introduce a notation: a “â” means “make this digit as big possible without
leaving the ZHA”. So,

in

53
54

42
43
44

31
32
33
34

20
21
22
23
24

10
11
12
13

00
01
02
03

we have
1̂2̂ = 54 = >,
12̂ = 13 = ne(12),

1̂2 = 42 = nw(12);

This lets us rewrite > as êf̂ , ne(ef) as ef̂ , and nw(ef) as êf .
Making P = ab, Q = cd, R = ef , we have:

((ab ≤ cd
C→ ef)↔ (ab ∧ cd ≤ ef))

↔


cd b′ ef → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
cd l′ ef → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
cd r′ ef → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
cd a′ ef → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ef)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ ef)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ (ab ∧ cd ≤ cd)) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ (ab ∧ cd ≤ ed)) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ (ab ∧ cd ≤ cf)) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (ab ∧ cd ≤ ef))



↔


c ≤ e ∧ d ≤ f → ((ab ≤ êf̂)↔ >) ∧
c > e ∧ d ≤ f → ((ab ≤ ef̂)↔ a ≤ e) ∧
c ≤ e ∧ d > f → ((ab ≤ êf)↔ b ≤ f) ∧
c > e ∧ d > f → ((ab ≤ ef)↔ (a ≤ e ∧ b ≤ f))


In the last conjunction the four cases are trivial to check.
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11 Logic in a Heyting Algebra
In sec.9 we saw a set of conditions — called 1 to 8’ — that characterize the “Heyting-
Algebra-ness” of a PC-structure. It is easy to see that Heyting-Algebra-ness, or “HA-
ness”, is equivalent to this set of conditions:

1 ∀P. (P ≤ P ) id

∀P,Q,R. (P ≤ R) ← (P ≤ Q) ∧ (Q ≤ R) comp

2 ∀P. (P ≤ >) >1

3 ∀Q. (⊥ ≤ Q) ⊥1

6 ∀P,Q,R. (P ≤ Q ∧R) → (P ≤ Q) ∧1
∀P,Q,R. (P ≤ Q ∧R) → (P ≤ R) ∧2
∀P,Q,R. (P ≤ Q ∧R) ← (P ≤ Q) ∧ (P ≤ R) ∧3

7 ∀P,Q,R. (P ∨Q ≤ R) → (P ≤ R) ∨1
∀P,Q,R. (P ∨Q ≤ R) → (Q ≤ R) ∨2
∀P,Q,R. (P ∨Q ≤ R) ← (P ≤ R) ∧ (Q ≤ R) ∨3

8 ∀P,Q,R. (P ≤ Q→R) → (P ∧Q ≤ R) →1

∀P,Q,R. (P ≤ Q→R) ← (P ∧Q ≤ R) →2

We omitted the conditions 4 and 5, that defined ‘↔’ and ‘¬’ in terms of the other
operators. The last column gives a name to each of these new conditions.

These new conditions let us put (some) proofs about HAs in tree form, as we shall
see soon.

Let us introduce two new notations. The first one,

(expr)
[
v1:=repl1
v2:=repl2

]
indicates simultaneous substitution of all (free) occurrences of the variables v1 and v2
in expr by repl1 and repl2. For example,

((x+ y) · z)
[ x:=a+y

y:=b+z
z:=c+x

]
= ((a+ y) + (b+ z)) · (c+ x).

The second is a way to write ‘→’s as horizontal bars. In

A B C

D
α

E F

G
β

H

I
γ

J
δ

K
ε

L M

N
ζ

O

P
η

the trees mean:

• if A, B, C are true then D is true (by α),
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• if E, F , are true then G is true (by β),

• if H is true then I is true (by γ),

• J is true (by δ, with no hypotheses),

• K is true (by ε); if L and M then N (by ζ); if K, N , O, then P (by η); combining
all this we get a way to prove that if L, M , O, then P ,

where α, β, γ, δ, ε, ζ, η are usually names of rules.
The implications in the table in the beginning of this section can be rewritten as

“tree rules” as:

P ≤ P
id

P ≤ Q Q ≤ R

P ≤ R
comp

P ≤ > >1 ⊥ ≤ Q
⊥1

P ≤ Q ∧R

P ≤ Q
∧1

P ≤ Q ∧R

P ≤ R
∧2

P ≤ Q P ≤ R

P ≤ Q ∧R
∧3

P ∨Q ≤ R

P ≤ R
∨1

P ∨Q ≤ R

Q ≤ R
∨2

P ≤ R Q ≤ R

P ∨Q ≤ R
∨3

P ≤ Q→R

P ∧Q ≤ R
→1

P ∧Q ≤ R

P ≤ Q→R
→2

Note that the ‘∀P,Q,R ∈ Ω’s are left implicit in the tree rules, which means that
every substitution instance of the tree rules hold; sometimes — but rarely — we will
indicate the substitution explicitly, like this,(

P ∧Q ≤ R

P ≤ Q→R
→2

)[
Q:=P→⊥
R:=⊥

]
 

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥)

→2

(→2)
[
Q:=P→⊥
R:=⊥

]
 

P ∧ (P→⊥) ≤ ⊥
P ≤ ((P→⊥)→⊥) →2

[
Q:=P→⊥
R:=⊥

]
Usually we will only say ‘→2’ instead of ‘→2

[
Q:=P→⊥
R:=⊥

]
’ at the right of a bar, and the

task of discovering which substitution has been used is left to the reader.
The tree rules can be composed in a nice visual way. For example, this,

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ P
∧1

P ≤ R

P ∧Q ≤ R
comp

P ∧Q ≤ P ∧Q
id

P ∧Q ≤ Q
∧2

Q ≤ S

P ∧Q ≤ S
comp

P ∧Q ≤ R ∧ S
∧3
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“is” a proof for:

∀P,Q,R, S ∈ Ω. (P ≤ R) ∧ (Q ≤ S)→ ((P ∧Q) ≤ (R ∧ S)).

11.1 Derived rules
Note: in this section we will ignore the operators ‘↔’ and ‘¬’ in PC-structures; we will
think that every ‘P ↔ Q’ is as abbreviation for ‘(P→Q) ∧ (Q→P )’ and every ‘¬P ’ is
an abbreviation for ‘P→>’.

We’ll write [>1], . . . , [→2] for the “linear” versions of the rules in last section — for
example, [→2] is (∀P,Q,R ∈ Ω. (P∧Q ≤ R)→ (P ≤ Q→R)) — and if S = {r1, . . . , rn}
is a set of rules, each in tree form, then [S] = [r1]∧ . . .∧ [rn], and an “S-tree” is a proof
in tree form that only uses rules that are in the set S.

Let HA-ness1, HA-ness2, HA-ness3, be these sets, with the rules from sec.11:

HA-ness1 = {id, comp,>1,⊥1,∧3,∨3,→2},
HA-ness2 = {∧1,∧2,∨1,∨2,→1},
HA-ness3 = HA-ness1 ∪ HA-ness2

and let HA-ness4, HA-ness5 and HA-ness7 be these ones, where the new rules are the
ones at the left column of Figure 1:

HA-ness4 = {∧4,∧5,∨4,∨5,MP0,MP}
HA-ness5 = HA-ness1 ∪ HA-ness4
HA-ness7 = HA-ness1 ∪ HA-ness2 ∪ HA-ness4

Note that the trees in the right of Figure 1 are HA-ness3-trees.
Figure 1 can be interpreted in two ways. The first one is that it shows that

[HA-ness3] → [∧4],
[HA-ness3] → [∧5],
[HA-ness3] → [∨4],
[HA-ness3] → [∨5],
[HA-ness3] → [MP0],

[HA-ness3] → [MP],

[HA-ness3] → [HA-ness4],
[HA-ness3] → [HA-ness7];

the second one is that it shows a way to replace occurrences of ∧4, ∧5, ∨4, ∨5, MP0,
MP. Take an HA-ness7-tree, T . Call it hypotheses H1, . . . , Hn, and its conclusion C,
Replace each occurrence of ∧4, ∧5, ∨4, ∨5, MP0, MP in T by the corresponding tree in
the right side of Figure 1. The result is a new tree, T ′, which is “equivalent” to T in
the sense of having the same hypotheses and conclusion as T . So,
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Q ∧R ≤ Q
∧4

:=

Q ∧R ≤ Q ∧R
id [ P :=Q∧R ]

Q ∧R ≤ Q
∧1 [ P :=Q∧R ]

Q ∧R ≤ R
∧5

:=

Q ∧R ≤ Q ∧R
id [ P :=Q∧R ]

Q ∧R ≤ R
∧2 [ P :=Q∧R ]

P ≤ P ∨Q
∨4

:=

P ∨Q ≤ P ∨Q
id [ P :=P∨Q ]

P ≤ P ∨Q
∨1 [ R:=P∨Q ]

Q ≤ P ∨Q
∨5

:=

P ∨Q ≤ P ∨Q
id [ P :=P∨Q ]

Q ≤ P ∨Q
∨2 [ R:=P∨Q ]

Q ∧ (Q→R) ≤ R
MP0 :=

Q→R ≤ Q→R
id

(Q→R) ∧Q ≤ R
→1

P ≤ Q P ≤ Q→R

P ≤ R
MP

:=

P ≤ Q P ≤ Q→R

P ≤ Q ∧ (Q→R) Q ∧ (Q→R) ≤ R
MP0

P ≤ R
comp

Figure 1: Derived rules
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P ≤ Q ∧R

P ≤ Q
∧1

:=

P ≤ Q ∧R Q ∧R ≤ Q
∧4

P ≤ Q
comp

P ≤ Q ∧R

P ≤ R
∧2

:=

P ≤ Q ∧R Q ∧R ≤ R
∧5

P ≤ R
comp

P ∨Q ≤ R

P ≤ R
∨1

:=

P ≤ P ∨Q
∨4

P ∨Q ≤ R

P ≤ R
comp

P ∨Q ≤ R

Q ≤ R
∨2

:=

Q ≤ P ∨Q
∨5

P ∨Q ≤ R

Q ≤ R
comp

P ≤ Q→R

P ∧Q ≤ R
→1

:=

P ∧Q ≤ Q
∧5

P ∧Q ≤ P
∧4

P ≤ Q→R

P ∧Q ≤ Q→R
comp

P ∧Q ≤ Q ∧ (Q→R)
∧3

Q ∧ (Q→R) ≤ R
MP0

P ∧Q ≤ R
comp

Figure 2: Derived rules (2)
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• every HA-ness3-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness3-tree.

We call this trick “derived rules” — the rules in HA-ness4 are “derived” from
HA-ness3, and HA-ness3 and HA-ness7 are “equivalent” in the sense that they “prove
the same things”.

Now look at Figure 2. It has the rules in HA-ness2 at the left, and HA-ness5-trees at
the right; it shows that

[HA-ness5] → [∧1],
[HA-ness5] → [∧2],
[HA-ness5] → [∨1],
[HA-ness5] → [∨2],
[HA-ness5] → [→2],

[HA-ness5] → [HA-ness2],
[HA-ness5] → [HA-ness7],

and it also shows how to take an HA-ness7-tree T and replace every occurrence of
an HA-ness4-rule in it by an HA-ness3-tree, producing an HA-ness3-tree T ′ which is
“equivalent” to T . This means that:

• every HA-ness5-tree is an HA-ness7-tree,

• every HA-ness7-tree is “equivalent” to an HA-ness5-tree,

and that HA-ness3, HA-ness7 and HA-ness5 are all “equivalent”.

12 Topologies
The best way to connect ZHAs to several standard concepts is by seeing that ZHAs are
topologies on certain finite sets — actually on 2-column acyclical graphs (sec.15). This
will be done here and in the next few sections.

A topology on a set X is a subset U of P(X) that contains the “everything” and the
“nothing” and is closed by binary unions and intersections and by arbitrary unions.
Formally:

1) U contains X and ∅,
2) if P,Q ∈ U then U contains P ∪Q and P ∩Q,
3) if V ⊂ U then U contains

⋃
V .

A topological space is a pair (X,U) where X is a set and U is a topology on X.
When (X,U) is a topological space and U ∈ U we say that U is open in (X,U).
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For example, let X be the ZSet • ••• •, and let’s use the characteristic function notation
from sec.2 to denote its subsets — we write X = 1 1

1
1 1 and ∅ = 0 0

0
0 0 instead of X = • ••• •

and ∅ = · ··· · .
If U =

{
1 0
0

0 0,
0 1
0

0 0,
0 0
1

0 0,
0 0
0

1 0,
0 0
0

0 1

}
then U ⊂ P(X) but U fails all the conditions in 1, 2,

3 above:
1) X = 1 1

1
1 1 6∈ U and ∅ = 0 0

0
0 0 6∈ U

2) Let P = 1 0
0

0 0 ∈ U and Q = 0 1
0

0 0 ∈ U . Then P ∩Q = 0 0
0

0 0 6∈ U and P ∪Q = 1 1
0

0 0 6∈ U .
3) Let V =

{
0 1
0

0 0,
0 0
1

0 0,
0 0
0

1 0

}
⊂ U . Then

⋃
V = 0 1

0
0 0 ∪

0 0
1

0 0 ∪
0 0
0

1 0 =
0 1
1

1 0 6∈ U .

Now let K =
•• •••

and U =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
. In this case (K,U) is a

topological space.

Some sets have “default” topologies on them, denoted with ‘O’. For example, R is
often used to mean the topological space (R,O(R)), where:

O(R) = {U ⊂ R | U is a union of open intervals }.

We say that a subset U ⊂ R is “open in R” (“in the default sense”; note that now
we are saying just “open in R”, not “open in (R,O(R))”) when U is a union of open
intervals, i.e., when U ∈ O(R); but note that P(R) and {∅,R} are also topologies on
R, and:

{2, 3, 4} ∈ P(R), so {2, 3, 4} is open in (R,P(R)),
{2, 3, 4} 6∈ O(R), so {2, 3, 4} is not open in (R,O(R)),
{2, 3, 4} 6∈ {∅,R}, so {2, 3, 4} is not open in (R, {∅,R});

when we say just “U is open in X”, this means that:
1) O(X) is clear from the context, and
2) U ∈ O(X).

13 The default topology on a ZSet
Let’s define a default topology O(D) for each ZSet D.

For each ZSet D we define O(D) as:

O(D) := {U ⊂ D | ∀((x, y), (x′, y′)) ∈ BPM(D).

(x, y) ∈ U → (x′, y′) ∈ U }

whose visual meaning is this. Turn D into a ZDAG by adding arrows for the black
pawns moves (sec.3), and regard each subset U ⊂ D as a board configuration in which
the black pieces may move down to empty positions through the arrows. A subset U is
“stable” when no moves are possible because all points of U “ahead” of a black piece
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are already occupied by black pieces; a subset U is “non-stable” when there is at least
one arrow ((x, y), (x′, y′)) ∈ BPM(D) in which (x, y) had a black piece and (x′, y′) is an
empty position.

In our two notations for subsets (sec.2) a subset U ⊂ D is unstable when it has an
arrow like ‘• → ·’ or ‘1 → 0’; remember that black pawn moves arrows go down. A
subset U ⊂ D is stable when none of its ‘•’s or ‘1’s can move down to empty positions.

“Open” is the same as “stable”. O(D) is the set of stable subsets of D.

Some examples:
0

0 1
0
0

is not open because it has a 1 above a 0,
O( •• •••

) =
{

0
0 0
0
0
,

0
0 0
0
1
,

0
0 0
1
1
,

0
0 1
1
1
,

0
1 0
1
1
,

0
1 1
1
1
,

1
1 1
1
1

}
,

O( •• •• •) =
{ 0
0 0
0 0,

0
0 0
0 1,

0
0 0
1 0,

0
0 0
1 1,

0
0 1
0 1,

0
0 1
1 1,

0
1 0
1 0,

0
1 0
1 1,

0
1 1
1 1,

1
1 1
1 1

}
.

The definition of O(D) above can be generalized to any directed graph. If (A,R) is
a directed graph, then (A,OR(A)) is a topological space if we define:

OR(A) := {U ⊆ A | ∀(a, b) ∈ R. (a ∈ U → b ∈ U) }

The two definitions are related as this: O(D) = OBPM(D)(D).
Note that we can see the arrows in BPM(D) or in R as obligations that open sets

must obey; each arrow a → b says that every open set that contains a is forced to
contain b too.

14 Topologies as partial orders
For any topological space (X,O(X)) we can regard O(X) as a partial order, ordered
by inclusion, with ∅ as its minimal element and X as its maximal element; we denote
that partial order by (O(X),⊆).

Take any ZSet D. The partial order (O(D),⊆) will sometimes be a ZHA when we
draw it with ∅ at the bottom, D at the top, and inclusions pointing up, as can be seen
in the three figures below; when D = •• •• • or D = • •• •• • the result is a ZHA, but when
D = • • •• • it not.

Let’s write “V ⊂1 U” for “V ⊆ U and V and U differ in exactly one point”. When D
is a ZSet the relation ⊆ onO(D) is the transitive-reflexive closure of ⊂1, and (O(D),⊂1)
is easier to draw than (O(D),⊆).
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(H,BPM(H)) =

•
• •
• •

↙↘
↓ ↓ (O(H),⊂1) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

(G,BPM(G)) =
• •

• •
• •
↙↘↙
↘↙↘ (O(G),⊂1) =

1 11 11 1

1 01 11 1
0 11 11 1

0 01 11 1
0 10 11 1

0 01 01 1
0 00 11 1

0 01 01 0
0 00 01 1

0 00 01 0
0 00 00 1

0 00 00 0

↗ ↖

↖ ↗ ↖

↗ ↖ ↗

↗ ↖ ↗

↖ ↗ ↖

↖ ↗

(W,BPM(W )) =
• • •
• •↘↙↘↙ (O(W ),⊂1) =

1 1 11 1

1 1 01 1 1 0 11 1 0 1 11 1

1 0 01 1 0 1 01 1 0 0 11 1

1 0 01 0 0 0 01 1 0 0 10 1

0 0 01 0 0 0 00 1

0 0 00 0

↗ ↑ ↖

↑ ↖↗ ↖↗ ↑

↗ ↖ ↑ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

We can formalize a “way to draw O(D) as a ZHA” (or “...as a ZDAG”) as a bijective
function f from a ZHA (or from a ZSet) S toO(D) that creates a perfect correspondence
between the white moves in S and the “V ⊂1 U -arrows”; more precisely, an f such that
this holds: if a, b ∈ S then (a, b) ∈ WPM(S) iff f(a) ⊂1 f(b).

Note that the number of elements in an open set corresponds to the height where
it is drawn; if f : S → O(D) is a way to draw O(D) as a ZHA or a ZDAG then f takes
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points of the form (__, y) to open sets with y elements, and if f : S → O(D) is a way
to draw O(D) as a ZHA (not a ZDAG!) then we also have that f((0, 0)) = ∅ ∈ O(D).

The diagram for (O(H),⊂1) above is a way to draw O(H) as a ZHA.
The diagram for (O(G),⊂1) above is a way to draw O(G) as a ZHA.
The diagram for (O(W ),⊂1) above is not a way to draw O(W ) as a ZSet. Look at

0 1 01 1 and 1 0 11 1 in the middle of the cube formed by all open sets of the form a b c1 1 . We
don’t have 0 1 01 1 ⊂1

1 0 11 1 , but we do have a white pawn move (not draw in the diagram!)
from f−1(0 1 01 1 ) to f−1(1 0 11 1 ). We say that a ZSet is thin when it doesn’t have three
independent points.

Every time that a ZSet D has three independent points, as in W , we will have a
situation like in (O(W ),⊂1); for example, if B = • •• • •• • then the open sets of B of the
form 0 0a b c1 1 form a cube.

15 2-Column Graphs
Note: in this section we will manipulate objects with names like 1_, 2_, 3_, . . . , _1,_2,_3, . . .;
here are two good ways to formalize them:

... ...
4_ = (0, 4) _4 = (1, 4)

3_ = (0, 3) _3 = (1, 3)

2_ = (0, 2) _2 = (1, 2)

1_ = (0, 1) _1 = (1, 1)

or

... ...
4_ = "4_" _4 = "_4"
3_ = "3_" _3 = "_3"
2_ = "2_" _2 = "_2"
1_ = "1_" _1 = "_1"

,

where "1_", "_2", "", "Hello!", etc are strings.

We define:
LC(l) := {1_, 2_, . . . , l_}
RC(r) := {_1,_2, . . . ,_r},

which generate a “left column” of height l and a “right column” of height r.
A description for a 2-column graph (a “D2CG”) is a 4-tuple (l, r, R, L), where l, r ∈

N, R ⊂ LC(l) × RC(r), L ⊂ RC(r) × LC(l); l is the height of the left column, r is the
height of the right column, and R and L are set of intercolumn arrows (going right and
left respectively).

The operation 2CG (in a sans-serif font) generates a directed graph from a D2CG:

2CG(l, r, R, L) :=

(
LC(l) ∪ RC(r),

{
{l_→(l−1)_, ..., 2_→1_}∪
{_r→_(r−1), ..., _2→_1}∪

R∪L

})
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For example,

2CG(3, 4,
{

3_→_4,
2_→_3

}
,
{

2_←_2,
1_←_2

}
) :=

({
3_, 2_, 1_,

_4, _3, _2, _1

}
,

{ 3_→2_, 2_→1_,
_4→_3, _3→_2, _2→_1,

3_→_4, 2_→_3,
2_←_2, 1_←_2

})
which is: 

1_
2_
3_

_1

_2

_3

_4


we will usually draw that more compactly, by omitting the intracolumn (i.e., vertical)
arrows: (

1_
2_
3_

_1
_2
_3
_4
)

or

(
•
•
•

•
•
•
•
)
.

A 2-column graph (a “2CG”) is a directed graph that is of the form 2CG(l, r, R, L).
We will often say (P,A) = 2CG(l, r, R, L), where the P stand for “points” and A for
“arrows”.

A 2-column acyclical graph (a “2CAG”) is a 2CG that doesn’t have cycles. If L
has an arrow that is the opposite of an arrow in R, this generates a cycle of length 2;
if R has an arrow l_→_r′ and L has an arrow l′_←_r, where l ≤ l′ and r ≤ r′, this
generates a cycle that can have a more complex shape — a triangle or a bowtie. For
example, 

1_
2_
3_
4_

_1

_2

_3

 and


1_
2_
3_

_1

_2

_3

_4
 .

16 Topologies on 2CGs
In this section we will see that ZHAs are topologies on 2CAGs.
Let (P,A) = 2CG(l, r, R, L) be a 2-column graph.
What happens if we look at the open sets of (P,A), i.e., at OA(P )? Two things:

1) every open set U ∈ OA(P ) is of the form LC(a) ∪ RC(b),
2) arrows in R and L forbids some ‘LC(a) ∪ RC(b)’s from being open sets.

In order to understand that we need to introduce some notations for “piles”.
The function

pile(〈a, b〉) := LC(a) ∪ RC(b)
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converts an element 〈a, b〉 ∈ LR into a pile of elements in the left column of height a
and a pile of elements in the right column of height b. We will write subsets of the
points of a 2CG using a positional notation with arrows. So, for example, if (P,A) =
2CG(3, 4, {2_→_3}, {2_←_2}) then

(P,A) =

(
1_
2_
3_

_1
_2
_3
_4
)

and pile(21) =

(
1
1
0

1
0
0
0
)

(as a subset of P ).

Note that pile(21) is not open in (P,OA(P )), as it has an arrow ‘1→ 0’. In fact, the
presence of the arrow {2_→_3} in A means that all piles of the form(

1
1
?

?
?
0
0
)

are not open, the presence of the arrow {2_←_2} means that the piles of the form(
?
0
0

1
1
?
?
)

are not open sets.
The effect of these prohibitions can be expressed nicely with implications. If

(P,A) = 2CG(l, r,
{

c_→_d,
e_→_f

}
,
{

g_←_h,
i_←_j

}
)

then

OA(P ) = { pile(ab) | a ∈ {0, . . . , l}, b ∈ {0, . . . , r},

(
a≥c→b≥d ∧
a≥e→b≥f ∧
a≥g←b≥h ∧
a≥i←b≥j

)
}

Let’s use a shorter notation for comparing 2CGs and their topologies:

O


1_
2_
3_
4_

_1

_2

_3

_4

_5 =

42
43
44
45

32
33
34
35

20
21
22
23
24
25

10
11
12
13
14

00
01
02
03

the arrows in R and L and the values of l and r are easy to read from the 2CG at the
left, and we omit the ‘pile’s at the right.

In a situation like the above we say that the 2CG in the ‘O(. . .)’ generates the ZHA
at the right. There is an easy way to draw the ZHA generated by a 2CG, and a simple
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way to find the 2CG that generates a given ZHA. To describe them we need two new
concepts.

If (A,R) is a directed graph and S ⊂ A then ↓S is the smallest open set in OR(A)
that contains S. If (A,R) is a ZDAG with black pawns moves as its arrows, think that
the ‘1’s in S are painted with a black paint that is very wet, and that that paint flows
into the ‘0’s below; the result of ↓S is what we get when all the ‘0’s below ‘1’s get
painted black. For example: ↓ 0 10 00 0 =

0 10 11 1. When (P,A) is a 2CG and S ⊆ P , we have
to think that the paint flows along the arrows, even if some of the intercolumn arrows
point upward. For example:

↓

(
1
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

and if S consists of a single point, S = {s}, then we may write ↓s instead of ↓{s} = ↓S.
In the 2CG above, we have (omitting the ‘pile’s):

↓_2 = ↓{_2} = ↓

(
0
0
0

0
1
0
0
)

=

(
1
1
0

1
1
1
0
)

= 23, and
↓_4=24,

↓3_=33, ↓_3=23,
↓2_=23, ↓_2=23,
↓1_=10, ↓_1=01,

The second concept is this: the “generators” of a ZDAG D with white pawns moves
as its arrows — or of a ZHA D — are the points of D that have exactly one white pawn
move pointing to them (not going out of them).

If (P,A) is a 2CAG, then OA(P ) is a ZHA, and ‘↓’ is a bijection from P to the
generators of OA(P ); for example:

O


1_
2_
3_
4_

_1

_2

_3

_4

_5 =

42
43
44
45

32
33
34
35

20
21
22
23
24
25

10
11
12
13
14

00
01
02
03

4_
·
·
·

3_
·
·
·

2_
·
·
·
·
_5

1_
·
·
·
_4

·
_1

_2
_3

but if (P,A) is a 2CG with cycles, thenOA(P ) is not a ZHA because each cycle generates
a “gap” that disconnects the points of OA(P ). We just saw an example of a 2CG with
a cycle in which ↓2_ = 23 = ↓_3 = ↓_2; look at its topology:

O


1_
2_
3_

_1

_2

_3

_4
 =

34
33 24
23

11
10 01
00
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17 Topologies as Heyting Algebras
The open-set semantics for Intuitionistic Propositional Logic is based on this idea:
choose any topological space (X,O(X)); the opens sets of O(X) will play the role of
truth-values, and we define the components of a Heyting Algebra (sec.9) as this:

Ω := O(X)

P ≤ Q := P ⊆ Q

> := {x ∈ X | > } = X

⊥ := {x ∈ X | ⊥ } = ∅
P ∧Q := {x ∈ X | x ∈ P ∧ x ∈ Q } = P ∩Q

P ∨Q := {x ∈ X | x ∈ P ∨ x ∈ Q } = P ∪Q

P
M→ Q := {x ∈ X | x ∈ P → x ∈ Q }

= {x ∈ X | x 6∈ P ∨ x ∈ Q } = (X\P ) ∪Q

However, this ‘ M→’ may return a non-open result even when given open inputs,

0
1 0
1 0

M→ 0
0 0
1 1 = 1

0 1
1 1

so our definition is broken; we can fix it by taking the interior (see sec.38):

P → Q := int(P
M→ Q) = int((X\P ) ∪Q)

Theorem 17.1 For any topological space (X,O(X)) the structure (Ω,≤,>,⊥,∧,∨,→)
defined as above is a Heyting Algebra. In particular, this holds for any P,Q,R ∈ Ω:
P ≤ (Q→ R) iff (P ∧Q) ≤ R.

Proof. Standard; see for example [Awo06] (section 6.3). �

Note that Theorem 17.1 gives us another way to calculate the connectives in 2CGs.
In sec.8 we saw how to calculate ¬¬P → P in a certain ZHA when P = 10; the
topological version of that is:

¬¬ P︸︷︷︸
10︸ ︷︷ ︸

02︸ ︷︷ ︸
20

→ P︸︷︷︸
10

︸ ︷︷ ︸
12

¬¬ P︸︷︷︸
0

0 0
1 0︸ ︷︷ ︸
0

0 1
0 1︸ ︷︷ ︸
0

1 0
1 0

→ P︸︷︷︸
0

0 0
1 0

︸ ︷︷ ︸
0

0 1
1 1
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18 ZHA Logic is between IPL and CPL
We saw in sec.7 a figure that shows that P ∨Q→ P ∧Q is not a tautology in Classical
Logic, and in sec.8 we saw a figure that shows that ¬(P ∧ Q) → (¬P ∨ ¬Q) is not a
tautology in a certain ZHA; it reappered in sec.17, translated to a topological setting.
We saw very little about deductive systems — only a bit in sec.11.

There is an easy argument that shows that “ZHA Logic” lies between Classical
Propositional Logical and Intuitionistic Propositional Logic, and is distinct from both.
We will work on the sets of tautologies. Let:

SP := P → (Q ∨R)

SQ := Q→ (P ∨R)

SR := R→ (P ∨Q)

S := SP ∨ SQ ∨ SR

We will try to find a countermodel for S, and in the process we will discover that
Taut(IPL) ( Taut(ZHAL) ( Taut(CPL).

If E is a PC-expression (sec.7) on a set V of variables — say, V = {P,Q,R}— then
a valuation for E if a triple (W,A, v), where W is a finite set of “worlds”, A ⊆ W ×W
is an “accessibility relation” on W , and v : V → OA(W ) is a function that assigns an
open set to each variable in V. Our examples will only need cases where W is a ZSet
and A = BPM(W ), and this lets us use a very compact notation for a triple (W,A, v)
in which only v is shown and W and A are left implicit.

19 Converting between ZHAs and 2CAGs
Let’s now see how to start from a 2CAG and produce its topology (a ZHA) quickly,
and how to find quickly the 2CAG that generates a given ZHA.

From 2CAGs to ZHAs. Let (P,A) = 2CG(l, r, R, L) be a 2CAG, and call the ZHA
generated by it H. Then the top point of H is lr, its bottom point is 00. Let C :=
{00, ↓1_, ↓2_, . . . , ↓l_, lr}; then C has some of the points of the left wall (sec.5) of H,
but usually not all. To “complete” C, apply this operation repeatedly: if ab ∈ C and
ab 6= lr, then test if either (a+1)b or a(b+1) are in C; if none of them are, add a(b+1),
which is northeast of ab. When there is nothing else to add, then C is the whole of the
left wall of H. For the right wall, start with D := {00, ↓_1, ↓_2, . . . , ↓_r, lr}, and for
each ab ∈ C with ab 6= lr, test if either (a + 1)b or a(b + 1) are in D; if none of them
are, add (a+ 1)b, which is northwest of ab. When there is nothing else to add, then D
is the whole of the right wall of H.
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In the acyclic example of the last section this yields:

C = {00, ↓1_, ↓2_, ↓3_, ↓4_, lr}
= {00, 10, 20, 32, 42, 45}
 {00, 10, 20, 21, 22, 32, 42, 43, 44, 45},

D = {00, ↓_1, ↓_2, ↓_3, ↓_4, ↓_5, lr}
= {00, 01, 02, 03, 14, 25, 45}
 {00, 01, 02, 03, 13, 14, 24, 25, 35, 45}.

and the ZHA is everything between the “left wall” C and the “right wall” D.

From ZHAs to 2CAGs. Let H be a ZHA and let lr be its top point. Form the
sequence of its left wall generators (the generators of H in which the arrow pointing
to them points northwest) and the sequence of its right wall generators (the generators
of H in which the arrow pointing to them points northeast). Look at where there are
“gaps” in these sequences; each gap in the left wall generators becomes an intercolumn
arrow going right, and each gap in the right wall generators becomes an intercolun
arrow going left. In the acyclic example of the last section, this yields:

_5 = 25

(gap becomes 2_←_5)
4_ = 42 _4 = 14

(no gap) (gap becomes 1_←_4)
3_ = 32 _3 = 03

(gap becomes 3_→_2) (no gap)
2_ = 20 _2 = 02

(no gap) (no gap)
1_ = 10 _1 = 01

We know l and r from the top point of the ZHA, and from the gaps we get R and L;
the 2CAG that generates this ZHA is:

(4, 5,
{
3_→_2

}
,

{
2_←_5,

1_←_4

}
).

Theorem 19.1 The two operations above are inverse to one another in the following
sense. If we start with a ZHA H, produce its 2CAG, and produce a ZHA H ′ from
that, we get the same ZHA: H ′ = H. In the other direction, if we start with a 2CAG
(P,A) = 2CG(l, r, R, L), produce its ZHA, H, and then obtain a 2CAG (P ′, A′) =
2CG(l′, r′, R′, L′) from H, we get back the original 2CAG if and only if it didn’t have
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any superfluous arrows; if the original 2CAG had superflous arrows then then new 2CAG
will have l′ = l, r′ = r, and R′ and L′ will be R and L minus these “superfluous arrows”,
that are the ones that can be deleted without changing which 2-piles are forbidden. For
example: 

1_
2_
3_
4_

_1

_2

_3

_4
  

44

32
33
34

22
23
24

10
11
12
13
14

00
01
02
03
04  


1_
2_
3_
4_

_1

_2

_3

_4


In this case we have R =

{ 4_→_4,
4_→_3,
3_→_2,
2_→_2

}
and R′ =

{
4_→_4,
2_→_2

}
.
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20 Piccs and slashings
A picc (“partition into contiguous classes”) of an interval I = {0, . . . , n} is a partition
P of I that obeys this condition (“picc-ness”):

∀a, b, c ∈ {0, . . . , n}. (a < b < c & a ∼P c)→ (a ∼P b ∼P c).

So P = {{0}, {1, 2, 3}, {4, 5}} is a picc of {0, . . . , 5}, and P ′ = {{0}, {1, 2, 4, 5}, {3}} is
a partition of {0, . . . , 5} that is not a picc.

A short notation for piccs is this:

0|123|45 ≡ {{0}, {1, 2, 3}, {4, 5}}

we list all digits in the “interval” in order, and we put bars to indicate where we change
from one equivalence class to another.

Let’s define a notation for “intervals” in LR,

[ab, ef ] := [〈a, b〉, 〈e, f〉] := { 〈c, d〉 ∈ LR | a ≤ c ≤ e & b ≤ d ≤ f },

Note that it can be adapted to define “intervals” in a ZHAs H:

[ab, ef ] ∩H := { 〈c, d〉 ∈ LR | a ≤ c ≤ e & b ≤ d ≤ f } ∩H

= { 〈c, d〉 ∈ H | a ≤ c ≤ e & b ≤ d ≤ f }.

A slashing S on a ZHA H with top element ab is a pair of piccs, S = (L,R),
where L is a picc on {0, . . . , a} and R is a picc on {0, . . . , b}; for example, S =
(4321/0, 0123\45\6) is a slashing on [00, 46]. We write the bars in L as ‘/’s and the bars
in R as ‘\’ as a reminder that they are to be interpreted as northeast and northwest
“cuts” respectively; S = (4321/0, 0123\45\6) is interpreted as the diagram at the left
below, and it “slashes” [00, 46] and the ZHA at the right below as:

0
1

2
3

4

0
1
2
3
4
5
6

40
41
42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

A slashing S = (L,R) on a ZHA H with top element ab induces an equivalence
relation ‘∼S’ on H that works like this: 〈c, d〉 ∼S 〈e, f〉 iff c ∼L e and d ∼R f . We write

[c]L := { e ∈ {0, . . . , a} | c ∼L a }
[d]R := { f ∈ {0, . . . , b} | d ∼L f }
[cd]S := { ef ∈ H | cd ∼S ef }
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for the equivalence classes, and note that

if [c]L = {c′, . . . , c′′}
and [d]L = {d′, . . . , d′′}
then [cd]S = [c′d′, c′′d′′] ∩H;

for example, in the ZHA at the right at the example above we have:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},
[12]S = [10, 43] ∩H = {11, 12, 13, 22, 23}.

We say that a slashing S on a ZHA H partitions H into slash-regions; later (sec.26)
we will see that a J-operator J also partitions H, and we will refer to its equivalence
classes as J-regions.

Slash-regions are intervals, but note that neither 10 or 43 belong to the slash-region
[12]S = [10, 43] ∩H above.

A slash-partition is a partition on a ZHA induced by a slashing, and a slash-
equivalence is an equivalence relation on a ZHA induced by a slashing. Formally, a
slash-partition on H is a set of subsets of H, and a slash-equivalence is subset of
H×H, but it is so easy to convert between partitions and equivalence relations that we
will often use both terms interchangeably. Our visual representation for slash-partitions
and slash-equivalences on a ZHA H will be the same: H slashed by diagonal cuts.

21 From slash-partitions back to slashings
We saw how to go from a slashing S = (L,R) on H to an equivalence relation ∼S on
H; let’s see now how to recover L and R from ∼S.

Let LWH be the left wall of H, and RWH the right wall of H. For example,

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH = {00, 01, 11, 12, 22, 23, 24, 34, 35, 45, 46}
RWH = {00, 01, 02, 03, 04, 14, 24, 25, 26, 36, 46}

To recover the picc L — which is a picc on {0, 1, 2, 3, 4}— we need to find where we
change from an L-equivalence class to another when we go from one digit to the next;
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and to recover the picc R — which is a picc on {0, 1, 2, 3, 4, 5, 6} — we need to find
where we change from an R-equivalence class to another when we go from one digit to
the next.

We can recover L and R by walking LWH (or RWH) from bottom to top in a
series of white pawns moves, and checking when we change from one S-equivalence
class to another. Northwest moves give information about L, and northeast moves give
information about R. Look at the example below, in which we walk on RWH :

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH =

45
46

34
35

22
23
24

11
12

00
01

RWH =

46
36

24
25
26

14

00
01
02
03
04

26
↗

25
: 25 6∼S26 ⇒ 56∼R6 ⇒ 5\6

25
↗

24
: 24∼S25 ⇒ 4∼R5 ⇒ 45

46
↖

36
: 36∼S46 ⇒ 3∼L4 ⇒ 43

04
↗

03
: 03 6∼S04 ⇒ 36∼R4 ⇒ 3\4

36
↖

26
: 26∼S36 ⇒ 2∼L3 ⇒ 32

03
↗

02
: 02∼S03 ⇒ 2∼R3 ⇒ 23

24
↖

14
: 14∼S24 ⇒ 1∼L2 ⇒ 21

02
↗

01
: 01∼S02 ⇒ 1∼R2 ⇒ 12

14
↖

04
: 04 6∼S14 ⇒ 06∼L1 ⇒ 1/0

01
↗

00
: 00∼S01 ⇒ 0∼R1 ⇒ 01

(L,R) = (4321/0, 0123\45\6)

22 Slash-regions have maximal elements
...here is how our argument will work, in a particular case:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},

I = [10, 43],

[12]S = I ∩H = {11, 12, 13, 22, 23}.
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(((11 ∨ 12︸ ︷︷ ︸
=12∈I

) ∨ 13︸ ︷︷ ︸
=13∈I

) ∨ 22

︸ ︷︷ ︸
=23∈I

) ∨ 23

︸ ︷︷ ︸
=23∈I

(((11 ∨ 12︸ ︷︷ ︸
=12∈H

) ∨ 13︸ ︷︷ ︸
=13∈H

) ∨ 22

︸ ︷︷ ︸
=23∈H

) ∨ 23

︸ ︷︷ ︸
=23∈H∨

[12]S =
∨
{11, 12, 13, 22, 23} = 11 ∨ 12 ∨ 13 ∨ 22 ∨ 23 ∈ I ∩H

11 ≤
∨

[12]S, 12 ≤
∨

[12]S, . . . , 23 ≤
∨

[12]S

We have [12]S = I ∩H, and
∨
[12]S belongs to I ∩H and is greter-or-equal than all

elements of I ∩H, so
∨
[12]S is the maximal element of [12]S.

Here is how we can do that in the general case. Let S = (L,R) be a slashing on a
ZHA H. Let P be a point of H. The equivalence class [P ]S is a finite set {P1, . . . , Pn},
and we know that [P ]S = H ∩ I for some interval I. Look at the elements P1, P1 ∨ P2,
(P1 ∨P2)∨P3, . . ., ((P1 ∨P2)∨ . . .)∨Pn We can see that all of them belong to both H
and I, so we conclude that

∨
[P ]S = ((P1 ∨ P2) ∨ . . .) ∨ Pn belongs to H ∩ I, and it is

easy to see that it is greater-or-equal that all elements in H ∩ I, so it is the maximal
element of H ∩ I.

A similar argument shows that
∧
[P ]S = ((P1∧P2)∧ . . .)∧Pn is the smallest element

of [P ]S.

The same argument shows that if C is any non-empty set of the form I ∩H, where
I is an interval, then

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C.

Remember that an interval in a ZHA H is any set of the form [P,Q] ∩ H. Let’s
introduce a new definition: a closed interval in a ZHA H is a non-empty set C ⊂ H,
with

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C; informally, a closed interval in a ZHA

has a lowest and highest element, and it “is” everything between them.

23 Cuts stopping midway
We saw in the last section that every slash-region is a closed interval. A partition into
closed intervals of a ZHA H is, as its name says, a partition of H whose equivalence
classes are all closed intervals in H.

Some partitions into closed intervals of a ZHA are not slashings — for example,
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take the partition P with these equivalence classes:

50
51
52
53

40
41
42
43

30
31
32
33

20
21
22
23

10
11
12
13

00
01
02
03

Here is an easy way to prove formally that the partition above does not come from
a slashing S = (L,R). We will adapt the idea from sec.21, where we recovered L and
R from northwest and northeast steps.

21 ∼P 31︸ ︷︷ ︸
false

↔ 2 ∼L 3︸ ︷︷ ︸
=(

↔ 22 ∼P 32︸ ︷︷ ︸
true

31 ∼P 41︸ ︷︷ ︸
true

↔ 3 ∼L 4︸ ︷︷ ︸
=(

↔ 32 ∼P 42︸ ︷︷ ︸
false

The problem is that the figure above has “cuts stopping midway”... if its cuts all
crossed the ZHA all the way through, we would have this for L and northeast cuts,

0 ∼L 1 ↔ 00 ∼P 10 ↔ 01 ∼P 11 ↔ 02 ∼P 12 ↔ 03 ∼P 13

1 ∼L 2 ↔ 10 ∼P 20 ↔ 11 ∼P 21 ↔ 12 ∼P 22 ↔ 13 ∼P 23

2 ∼L 3 ↔ 20 ∼P 30 ↔ 21 ∼P 31 ↔ 22 ∼P 32 ↔ 23 ∼P 33

3 ∼L 4 ↔ 30 ∼P 40 ↔ 31 ∼P 41 ↔ 32 ∼P 42 ↔ 33 ∼P 43

4 ∼L 5 ↔ 40 ∼P 50 ↔ 41 ∼P 51 ↔ 42 ∼P 52 ↔ 43 ∼P 53

5 ∼L 6 ↔ 50 ∼P 60 ↔ 51 ∼P 61 ↔ 52 ∼P 62 ↔ 53 ∼P 63

and something similar for R and northwest cuts.

Formally, a partition P on H has an “L-cut between c and c+ stopping midway” if
cd ∼P c+d 6↔ cd ∼P c+d for some d, and it has an “R-cut between d and d+ stopping
midway” if cd ∼P cd+ 6↔ c+d ∼P c+d+ for some c; here we are writing x+ for x+ 1.

Theorem 23.1 A partition of H into closed intervals is a slash-partition if and only
if it doesn’t have any cuts stopping midway.

Proof. Use the ideas above to recover L and R from ∼P , and then check that
S = (L,R) induces an equivalence relation ∼S that coincides with ∼P . �
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24 Slash-operators
We can define operations that take each each P ∈ H to the maximal and to the minimal
element of its S-equivalent class, now that we know that these maximal and minimal
elements exist:

P S :=
∨
[P ]S (maximal element),

P coS :=
∧
[P ]S (minimal element).

Note that [P ]S = [P coS, P S] ∩H.
We will use the operation ·S a lot and ·coS very little. The ‘co’ in ‘coS’ means that

·coS is dual to ·S, in a sense that will be made precise later.

A slash-operator on a ZHA H is a function ·S : H → H induced by a slashing
S = (L,R) on H. It is easy to see that P ≤ P S (“ ·S is non-decreasing”) and that
P S = (P S)S (“ ·S is idempotent”).

Any idempotent function ·F : H → H induces an equivalence relation on H: P ∼F Q
iff P F = QF . We can use that to test if a given ·F : H → H is a slash-operator: ·F is a
slash-operator iff it obeys all this:

1) ·F is idempotent,
2) ·F is non-decreasing,
3) ∼F partitions H into closed intervals,
4) ∼F doesn’t have cuts stopping midway.

25 Slash-operators: a property
Slash-operators obey a certain property that will be very important later. Let’s state
that property in five equivalent ways:

1) If cd ∼S c′d′ and ef ∼S e′f ′ then cd ∧ ef ∼S c′d′ ∧ e′f ′.
2) If P ∼S P ′ and Q ∼S Q′ then P ∧Q ∼S P ′ ∧Q′.
3) If P ∼S P ′ and Q ∼S Q′ then (P ∧Q)S = (P ′ ∧Q′)S.
4) If P ∼S P ′ and Q ∼S Q′ then

(P ∧Q)S = (P S ∧QS)S (a)
= ((P ′)S ∧ (Q′)S)S (b)
= (P ′ ∧Q′)S (c)

5) (P ∧Q)S = (P S ∧QS)S.

Here’s a proof of 1↔ 2↔ 3↔ 4↔ 5.
1↔ 2: we just changed notation,
2↔ 3: because A ∼S B iff AS = BS,
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3→ 5: make the substitution
[
P ′:=PS

Q′:=QS

]
in 3,

5→ 4: 4a is just a copy of 5, and 4c is a copy of 5 with
[
P :=P ′

Q:=Q′
]
. For 4b, note that

P ∼P P ′ implies P S = (P ′)S and Q ∼P Q′ implies QS = (Q′)S,
4→ 3: 4 is an equality between more expressions than 3,

...and here is a way to visualize what is going on:

30
31

32
33

20
21

22
23

10
11

12
13

00
01

02
03 P

P ′
P S

Q
Q′

QS

( P︸︷︷︸
30

∧ Q︸︷︷︸
03︸ ︷︷ ︸

00

)S

︸ ︷︷ ︸
22

= ( P︸︷︷︸
30

S

︸ ︷︷ ︸
32

∧ Q︸︷︷︸
03

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= ( P ′︸︷︷︸
31

S

︸ ︷︷ ︸
32

∧ Q′︸︷︷︸
13

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= ( P ′︸︷︷︸
31

∧ Q′︸︷︷︸
13︸ ︷︷ ︸

11

)S

︸ ︷︷ ︸
22

Note that all subexpressions belong to three S-regions: a region with P , P ′, P S = P ′S,
another with Q, Q′, QS = Q′S, and one with all the ‘∧’s. If we had cuts stopping
midway then some of the ‘∧’s could be in different regions.

I think that the clearest way to show (1) is by putting its proof in tree form:

cd ∼S c′d′

c ∼L c′
ef ∼S e′f ′

e ∼L e′

min(c, e) ∼L min(c′, e′)

cd ∼S c′d′

d ∼R d′
ef ∼S e′f ′

f ∼R f ′

min(d, f) ∼R min(d′, f ′)

min(c, e)min(d, f) ∼S min(c′, e′)min(d′, f ′)

cd ∧ ef ∼S c′d′ ∧ e′f ′

26 J-operators and J-regions
A J-operator on a Heyting Algebra H = (Ω,≤,>,⊥,∧,∨,→,↔,¬) is a function J :
Ω→ Ω that obeys the axioms J1, J2, J3 below; we usually write J as ·∗ : Ω→ Ω, and
write the axioms as rules.

P ≤ P ∗
J1

P ∗ = P ∗∗
J2

(P&Q)∗ = P ∗&Q∗
J3

J1 says that the operation ·∗ is non-decreasing.
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J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but will have interesting consequences.

Note that when H is a ZHA then any slash-operator on H is a J-operator on it; see
secs.24 and 25.

A J-operator induces an equivalence relation and equivalence classes on Ω, like
slashings do:

P ∼J Q iff P ∗ = Q∗

[P ]J := {Q ∈ Ω | P ∗ = Q∗ }
The axioms J1, J2, J3 have many consequences. The first ones are listed in Figure

3 as derived rules, whose names mean:
Mop (monotonicity for products): a lemma used to prove Mo,
Mo (monotonicity): P ≤ Q implies P ∗ ≤ Q∗,
Sand (sandwiching): all truth values between P and P ∗ are equivalent,
EC&: equivalence classes are closed by ‘&’,
EC∨: equivalence classes are closed by ‘∨’,
ECS: equivalence classes are closed by sandwiching,

Take a J-equivalence class, [P ]J , and list its elements: [P ]J = {P1, . . . , Pn}. Let
P∧ := ((P1 ∧ P2) ∧ . . .) ∧ Pn and Let P∨ := ((P1 ∨ P2) ∨ . . .) ∨ Pn. It turns out that
[P ]J = [P∧, P∨] ∩ Ω; let’s prove that by doing ‘⊆’ first, then ‘⊇’.

Using EC& and EC∨ several times we see that

P1 ∧ P2 ∼J P P1 ∨ P2 ∼J P

(P1 ∧ P2) ∧ P3 ∼J P (P1 ∨ P2) ∨ P3 ∼J P
... ...

((P1 ∧ P2) ∧ . . .) ∧ Pn ∼J P ((P1 ∨ P2) ∨ . . .) ∨ Pn ∼J P

so P∧ ∼J P∨ ∼J P , and by the sandwich lemma ([P∧, P∨] ∩ Ω) ⊆ [P ]J .
For any Pi ∈ [P ]J we have P∧ ≤ Pi ≤ P∨, which means that:

[P ]J = {P1, . . . , Pn}
⊆ {Q ∈ Ω | P∧ ≤ Q ≤ P∨ }
= [P∧, P∨] ∩ Ω,

so [P ]J ⊆ [P∧, P∨] ∩ Ω.

As the operation ‘·∗’ is increasing and idempotent, each equivalence class [P ]J has
exactly one maximal element, which is P ∗; but P∨ is also the maximal element of [P ]J ,
so P∨ = P ∗, and we can interpret the operation ‘·∗’ as “take each P to the top element
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(P&Q)∗ ≤ Q∗
Mop

:=

(P&Q)∗ = P ∗&Q∗
J3

P ∗&Q∗ ≤ Q∗

(P&Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗
Mo

:=

P ≤ Q

P = P&Q

P ∗ = (P&Q)∗ (P&Q)∗ ≤ Q∗
Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗
Sand

:=

P ≤ Q

P ∗ ≤ Q∗
Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗
Mo

P ∗∗ = P ∗
J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P&Q)∗
EC&

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗&Q∗ P ∗&Q∗ = (P&Q)∗
J3

P ∗ = Q∗ = (P&Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗
J1

Q ≤ Q∗
J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗
ECS

:=

P ≤ Q ≤ R R ≤ R∗
J1

P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗
Sand

P ∗ = R∗

P ∗ = Q∗ = R∗

Figure 3: J-operators: basic derived rules
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in its equivalence class”, which is similar to how we defined an(other) operation ‘·∗’ on
slashings in the previous section.

The operation “take each P to the bottom element in its equivalence class” will be
useful in a few occasions; we will call it ‘·co∗’ to indicate that it is dual to ‘·∗’ in some
sense. Note that P co∗ = P∧.

Look at the figure below, that shows a partition of a ZHA A = [00, 66] into five
regions, each region being an interval; this partition does not come from a slashing, as
it has cuts that stop midway. Define an operation ‘·∗’ on A, that works by taking each
truth-value P in it to the top element of its region; for example, 30∗ = 61.

60
61
62
63
64
65
66

50
51
52
53
54
55
56

40
41
42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

It is easy to see that ‘·∗’ obeys J1 and J2; however, it does not obey J3 — we will prove
that in sec.27. As we will see, the partitons of a ZHA into intervals that obey J1, J2,
J3 ae exactly the slashings; or, in other words, every J-operator comes from a slashing.

27 The are no Y-cuts and no λ-cuts
We want to see that if a partition of a ZHA H into intervals has “Y-cuts” or “λ-cuts”
like these parts of the last diagram in the last section,

22
21 12
11

⇐ this is a Y-cut

25
24 15
14

⇐ this is a λ-cut

then it operation J that takes each element to the top of its equivalence class cannot
obey J1, J2 and J3 at the same time. We will prove that by deriving rules that say
that if 11 ∼J 12 then 21 ∼J 22, and that if 15 ∼J 25 then 14 ∼J 24; actually, our
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rules will say that if 11∗ = 12∗ then (11 ∨ 21)∗ = (12 ∨ 21)∗, and that if 15∗ = 25∗ then
(15 ∧ 24)∗ = (25 ∧ 24)∗. The rules are:

P ∗ = Q∗

(P ∨R)∗ = (Q ∨R)∗
NoYcuts

:=

P ∗ = Q∗

P ∨R∗ = Q ∨R∗

(P ∨R∗)∗ = (Q ∨R∗)∗

(P ∨R)∗ = (Q ∨R)∗
∨∗Cube

P ∗ = Q∗

(P&R)∗ = (Q&R)∗
Noλcuts

:=

P ∗ = Q∗

P ∗&R∗ = Q∗&R∗

(P&R)∗ = (Q&R)∗
J3

The top derivation mentions a rule called ‘∨∗Cube’, which will be proved in the next
section.

28 How J-operators interact with connectives
Let’s start by proving another three derived rules:

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗
&∗C0 :=

P ∗∗ = P ∗
J2

Q∗∗ = Q∗
J2

(P ∗&Q∗)∗ = P ∗∗&Q∗∗ = P ∗&Q∗ = (P&Q)∗
J3

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
∨∗C0 :=

P ≤ P ∨Q

P ∗ ≤ (P ∨Q)∗
Mo

Q ≤ P ∨Q

Q∗ ≤ (P ∨Q)∗
Mo

P ∗ ∨Q∗ ≤ (P ∨Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗∗
Mo

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
J2

(P → Q∗)∗ ≤ P ∗ → Q∗
→∗C0 :=

P → Q∗ ≤ P → Q∗

(P → Q∗)&P ≤ Q∗

((P → Q∗)&P )∗ ≤ Q∗∗
Mo

((P → Q∗)&P )∗ ≤ Q∗
J2

(P → Q∗)∗&P ∗ ≤ Q∗
J3

(P → Q∗)∗ ≤ P ∗ → Q∗
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It is easy to prove each one of the arrows below (A //B means A ≤ B):

P&Q

P ∗&QccHHHHHHHH

P&Q∗

P ∗&Q∗ccHHHHHHHH
(P&Q)∗

(P ∗&Q)∗
ccHHHHHHHH

(P&Q∗)∗

(P ∗&Q∗)∗
ccHHHHHHHH

P&Q

P&Q∗;;vvvvvvvv

P ∗&Q

P ∗&Q∗;;vvvvvvvv
(P&Q)∗

(P&Q∗)∗
;;vvvvvvvv

(P ∗&Q)∗

(P ∗&Q∗)∗
;;vvvvvvvv

P&Q

(P&Q)∗
OO

P ∗&Q

(P ∗&Q)∗
OO

P&Q∗

(P&Q∗)∗
OO

P ∗&Q∗

(P ∗&Q∗)∗
OO

P∨Q

P ∗∨QccHHHHHHHH

P∨Q∗

P ∗∨Q∗ccHHHHHHHH
(P∨Q)∗

(P ∗∨Q)∗
ccHHHHHHHH

(P∨Q∗)∗

(P ∗∨Q∗)∗
ccHHHHHHHH

P∨Q

P∨Q∗;;vvvvvvvv

P ∗∨Q

P ∗∨Q∗;;vvvvvvvv
(P∨Q)∗

(P∨Q∗)∗
;;vvvvvvvv

(P ∗∨Q)∗

(P ∗∨Q∗)∗
;;vvvvvvvv

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

##

HHHHHHHH

P→Q∗

P ∗→Q∗

##

HHHHHHHH

(P→Q)∗

(P ∗→Q)∗

##

HHHHHHHH

(P→Q∗)∗

(P ∗→Q∗)∗

##

HHHHHHHH

P→Q

P→Q∗;;vvvvvvvv

P ∗→Q

P ∗→Q∗;;vvvvvvvv
(P→Q)∗

(P→Q∗)∗
;;vvvvvvvv

(P ∗→Q)∗

(P ∗→Q∗)∗
;;vvvvvvvv

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗
OO

P ∗→Q∗

(P ∗→Q∗)∗
OO

The cubes above will be called the “obvious and-cube”, the “obvious or-cube”, and
the “obvious implication-cube”, and they show partial orders between expressions of
the form (P ? � Q?)?, where the ‘�’ stands for one of the connectives ‘∧’, ‘∨’ or ‘→’,
and each ‘?’ marks a place where we can put either a ‘∗’ or nothing.

The rules &∗C0, ∨∗C0 and →∗C0 that we proved in the beginning of the section can
be used to add more information to the partial orders given by the three “obvious” cubes
above; adding them yields the cubes below, that will be called the “full and-cube”, the
“full or-cube”, and the “full implication-cube”.

P&Q

P ∗&QccHHHHHHHH

P&Q∗

P ∗&Q∗ccHHHHHHHH
(P&Q)∗

(P ∗&Q)∗
HHHHHHHH

HHHHHHHH

(P&Q∗)∗

(P ∗&Q∗)∗
HHHHHHHH

HHHHHHHH

P&Q

P&Q∗;;vvvvvvvv

P ∗&Q

P ∗&Q∗;;vvvvvvvv
(P&Q)∗

(P&Q∗)∗
vvvvvvvv

vvvvvvvv

(P ∗&Q)∗

(P ∗&Q∗)∗
vvvvvvvv

vvvvvvvv

P&Q

(P&Q)∗
OO

P ∗&Q

(P ∗&Q)∗
OO

P&Q∗

(P&Q∗)∗
OO

P ∗&Q∗

(P ∗&Q∗)∗

P∨Q

P ∗∨QccHHHHHHHH

P∨Q∗

P ∗∨Q∗ccHHHHHHHH
(P∨Q)∗

(P ∗∨Q)∗
HHHHHHHH

HHHHHHHH

(P∨Q∗)∗

(P ∗∨Q∗)∗
HHHHHHHH

HHHHHHHH

P∨Q

P∨Q∗;;vvvvvvvv

P ∗∨Q

P ∗∨Q∗;;vvvvvvvv
(P∨Q)∗

(P∨Q∗)∗
vvvvvvvv

vvvvvvvv

(P ∗∨Q)∗

(P ∗∨Q∗)∗
vvvvvvvv

vvvvvvvv

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

##

HHHHHHHH

P→Q∗

P ∗→Q∗
HHHHHHHH

HHHHHHHH

(P→Q)∗

(P ∗→Q)∗

##

HHHHHHHH

(P→Q∗)∗

(P ∗→Q∗)∗
HHHHHHHH

HHHHHHHH

P→Q

P→Q∗;;vvvvvvvv

P ∗→Q

P ∗→Q∗;;vvvvvvvv
(P→Q)∗

(P→Q∗)∗
;;vvvvvvvv

(P ∗→Q)∗

(P ∗→Q∗)∗
;;vvvvvvvv

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗P ∗→Q∗

(P ∗→Q∗)∗

We say that expr1 ≤ expr2 is true “by the full and-cube” when expr1 ≤ expr2
can be read from the (non-strict!) partial order in the the full and-cube; for example,
P ∧Q∗ ≤ (P ∗ ∧Q)∗ is true “by the full and-cube”, and similary P ∗ ∨Q∗ ≤ (P ∨Q)∗ is
true by the full or-cube and (P → Q)∗ ≤ P → Q∗ is true by the full implication-cube.

We write

expr1 ≤ expr2
&∗Cube expr1 ≤ expr2

∨∗Cube expr1 ≤ expr2
→∗Cube

to indicate that the expression below the bar is a consequence (a substitution instance)
of the partial order in the full and-cubes, the full or-cube, or the full implication-cube.

The six cubes will be discussed in more detail in the section 31.
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29 J-cubes as partial orders
If we number the vertices of the cubes of sec.28 like ths,

7

5 3 6

1 4 2

0

then we can refer to their nodes as (∧)0, . . . , (∧)7, (∨)0, . . . , (∨)7, (→)0, . . . , (→)7; note
that

(∧)0 = P ∧Q, (∧)4 = (P ∧Q)∗,

(∧)1 = P ∗ ∧Q, (∧)1+4 = (P ∗ ∧Q)∗,

(∧)2 = P ∧Q∗, (∧)2+4 = (P ∧Q∗)∗,

(∧)1+2 = P ∗ ∧Q∗, (∧)1+2+4 = (P ∗ ∧Q∗)∗,

and the same for (∨)k and (→)k.
With this convention we can interpret s set of arrows in a cube as a subset of

{0, . . . , 7}2, and use the positional notation for subsets from sec.2 to represent that as
a grid of ‘0’s and ‘1’s:

7

5

;;

www
www

w 7

3

OO7

6

cc

GGG
GGG

G

5

1

OO5

4

cc

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4

;;

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w

=


(0, 1), (2, 3), (4, 5), (6, 7),

(0, 2), (1, 3), (4, 6), (5, 7),

(0, 4), (1, 5), (2, 6), (3, 7)

 =

0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

This gives us a way to represent explictly the transitive-reflexive closure of a set of
arrows: 

7

5

;;

www
www

w 7

3

OO7

6

cc

GGG
GGG

G

5

1

OO5

4

cc

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4

;;

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w



∗

=

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 0 0 1 1 0 0
1 1 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

The derived rule &∗C0 from sec.28 proves

(P ∗ ∧Q∗)∗ = P ∗ ∧Q∗ = (P ∧Q)∗,
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that corresponds to arrows 7 //oo 3 //oo 4; if we add these arrows to the cube above we
get this,

7

5

;;

www
www

w 7

3

7

6

cc

GGG
GGG

G

5

1

OO5

4

cc

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4

;;

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w

3

4
;

We have
7

5

;;

www
www

w 7

3

7

6

cc

GGG
GGG

G

5

1

OO5

4

cc

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4

;;

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w

3

4
6=

7

5
www

www
w

www
www

w 7

3

7

6
GGG

GGG
G

GGG
GGG

G

5

1

OO5

4
GGG

GGG
G

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4
www

www
w

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w

but: 

7

5

;;

www
www

w 7

3

7

6

cc

GGG
GGG

G

5

1

OO5

4

cc

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4

;;

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w

3

4



∗

=



7

5
www

www
w

www
www

w 7

3

7

6
GGG

GGG
G

GGG
GGG

G

5

1

OO5

4
GGG

GGG
G

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4
www

www
w

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w



∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

Let’s give a name to this (non-strict) partial order: “&∗Cuben”, the “numerical
version” of the full and-cube. Now we can see more clearly the extent of the rule
&∗Cube defined in the end of sec.28: we have

(∧)i ≤ (∧)j
&∗Cube

whenever (i, j) ∈ &∗Cuben.
We have something similar for the or-cube and the implication-cube:

∨∗Cuben =



7

5
www

www
w

www
www

w 7

3

OO7

6
GGG

GGG
G

GGG
GGG

G

5

1

OO5

4
GGG

GGG
G

GGG
GGG

G 3

1

;;

www
www

w 3

2

cc

GGG
GGG

G 6

4
www

www
w

www
www

w 6

2

OO

1

0

cc

GGG
GGG

G 4

0

OO 2

0

;;

www
www

w



∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0



Planar HAs for Children 47

→∗Cuben =


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 ccGGGGGGG

6

7 ccGGGGGGG

0

2

{{

wwwwwww

1

3wwwwwww
wwwwwww
4

6

{{

wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5

2

6OO3

7


∗

=

1 1 1 1 1 1 1 1
0 0 1 0 0 0 1 0
1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0

Note that the arrows 2→ 0 and 6→ 4 in the version for the implication-cube above
are not mistakes — they correspond to P ∗→Q ≤ P→Q and (P ∗→Q)∗ ≤ (P→Q)∗.

30 Valuations induce partial orders
Let H be a ZHA, J be a J-operator on H, and v be a “valuation” that assigns to the
variables P and Q values in H; v is a function from {P,Q} to H, where P and Q are
seen as names. Once we have (H, J, v) we have a natural way to extend v to make it
assign values in H for P ∗, Q∗, and for the expressions in the nodes of the and-cube, the
or-cube and the implication-cube.

We will represent a triple (H, J, v) graphically by something like this,

P
P ∗

Q
Q∗

that shows the ZHA H, the slashing on H corresponding to J , and at least v(P ) and
v(Q); sometimes the diagram will show also v(P ∗) and v(Q∗), for convenience. With
this information is it easy to calculate v(expr) for all ‘expr’s of the form (P ?�Q?)?, i.e.,
all the expressions in the nodes of the and-cube, the or-cube and the implication-cube.

Let’s restrict our attention to ‘∨’ at this moment. We have:

P
P ∗

Q
Q∗

v(P ∨Q) = 11 = v((∨)0)
v(P ∗ ∨Q) = 21 = v((∨)1)

v(P ) = 10 v(P ∨Q∗) = 12 = v((∨)2)
v(Q) = 01 v(P ∗ ∨Q∗) = 22 = v((∨)3)
v(P ∗) = 20 v((P ∨Q)∗) = 22 = v((∨)4)
v(Q∗) = 02 v((P ∗ ∨Q)∗) = 22 = v((∨)5)

v((P ∨Q∗)∗) = 22 = v((∨)6)
v((P ∗ ∨Q∗)∗) = 22 = v((∨)7)
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This induces a partial order ∨∗Cubev(v) ⊆ {0, . . . , 7}2 in the following way: i ≤v j
iff v((∨)i) ≤H v((∨)j). One easy way to calculate this ‘≤v’ is to replace each number
from 0 to 7 in the cube by v((∨)i), and then draw arrows on that to represent the
partial order in H, and then bring these arrows “back”:

7

5 3 6

1 4 2

0

 

22

22 22 22

21 22 12

11

 


11

21 ccGGGGG
12

22 ccGGGGG
22

22 GGGGG
GGGGG

22

22 GGGGG
GGGGG

11

12;;wwwww

21

22;;wwwww
22

22wwwww
wwwww

22

22
wwwww
wwwww

11

22OO21

22OO

12

22OO22

22


∗

 


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 GGGGGGG

GGGGGGG

6

7 GGGGGGG

GGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6wwwwwww
wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5OO

2

6OO3

7


∗

We can do this more compactly, as:

∨∗Cubev

 P
P ∗

Q
Q∗

 =


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 GGGGGGG

GGGGGGG

6

7 GGGGGGG

GGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6wwwwwww
wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5OO

2

6OO3

7


∗

=


P∨Q

P∨Q∗ccGGGGGGG

P ∗∨Q

P ∗∨Q∗ccGGGGGGG
(P∨Q)∗

(P∨Q∗)∗
GGGGGGG

GGGGGGG

(P ∗∨Q)∗

(P ∗∨Q∗)∗
GGGGGGG

GGGGGGG

P∨Q

P ∗∨Q;;wwwwwww

P∨Q∗

P ∗∨Q∗;;wwwwwww
(P∨Q)∗

(P ∗∨Q)∗
wwwwwww

wwwwwww

(P∨Q∗)∗

(P ∗∨Q∗)∗
wwwwwww

wwwwwww

P∨Q

(P∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗


∗

which shows that in this valuation we have, for example, v((∨)3) = v((∨)7), i.e.,
P ∗∨Q∗ = (P ∗∨Q∗)∗. The important information that a valuation gives, though, is
in its ‘ 6≤’s. For example, here we have

v((∨)1) < v((∨)5) P∨Q∗ < (P∨Q∗)∗
v((∨)5) > v((∨)1) (P∨Q∗)∗ > P∨Q∗
v((∨)5) 6≤ v((∨)1) (P∨Q∗)∗ 6≤ P∨Q∗

If it were possible to prove — as in sec.28 — that (P∨Q∗)∗ ≤ P∨Q∗, then that would
be true in all valuations; by showing a valuation where (P∨Q∗)∗ 6≤ P∨Q∗ we show that
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(P∨Q∗)∗ ≤ P∨Q∗ cannot be a theorem, and that all attempts to find a tree-like proof
for (P∨Q∗)∗ ≤ P∨Q∗ are doomed to fail.

Note that

∨∗Cubev

 P
P ∗

Q
Q∗

 =


P∨Q

P∨Q∗ccGGGGGGG

P ∗∨Q

P ∗∨Q∗ccGGGGGGG
(P∨Q)∗

(P∨Q∗)∗
GGGGGGG

GGGGGGG

(P ∗∨Q)∗

(P ∗∨Q∗)∗
GGGGGGG

GGGGGGG

P∨Q

P ∗∨Q;;wwwwwww

P∨Q∗

P ∗∨Q∗;;wwwwwww
(P∨Q)∗

(P ∗∨Q)∗
wwwwwww

wwwwwww

(P∨Q∗)∗

(P ∗∨Q∗)∗
wwwwwww

wwwwwww

P∨Q

(P∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO



∗

This new valuation tells us something that the previous one didn’t: that P ∗∨Q∗ <
(P ∗∨Q∗)∗ in some valuation, and so (P ∗∨Q∗)∗ ≤ P ∗∨Q∗ cannot be a theorem.

31 Comparing partial orders
If we represent the partial orders of the examples of the last section as subsets of
{0, . . . , 7}2 we get:

∨∗Cubev

 P
P ∗

Q
Q∗

 =


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 GGGGGGG

GGGGGGG

6

7 GGGGGGG

GGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6wwwwwww
wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5OO

2

6OO3

7


∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

∨∗Cubev

 P
P ∗

Q
Q∗

 =


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 GGGGGGG

GGGGGGG

6

7 GGGGGGG

GGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6wwwwwww
wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5OO

2

6OO3

7OO


∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

If we represent the transitive-reflexive closures of the obvious or-cube and the full
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or-cube of sec.29 as subsets of {0, . . . , 7}2, we get:

(
obvious
or-cube

)∗
=


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 ccGGGGGGG

6

7 ccGGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6;;wwwwwww

5

7;;wwwwwww

0

4OO1

5OO

2

6OO3

7OO


∗

=

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

(
full

or-cube

)∗
=


0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 GGGGGGG

GGGGGGG

6

7 GGGGGGG

GGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6wwwwwww
wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5OO

2

6OO3

7OO


∗

=

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

If we compare these four partial orders we get:(
obvious
or-cube

)∗
(
(

full
or-cube

)∗

= ∨∗Cubev

 P
P ∗

Q
Q∗

 ( ∨∗Cubev

 P
P ∗

Q
Q∗


Note that each ‘1’ in the grid of the obvious or-cube tells us something that we

know how to prove; the same for the full or-cube, and the full or-cube has more ‘1’s in
its grid, so it has “more information” — about the existence of tree-like theorems —
than the obvious or-cube. For example, the obvious or-cube tells us that we know how
prove (P∨Q)∗ ≤ (P ∗∨Q∗)∗, and the full or-cube tells us that we know how to prove
(P∨Q)∗ = (P ∗∨Q∗)∗.

Each ’0’ in the grid of a valuation-cube tells us about something that cannot be
be proved as a theorem, because that valuation is a “countermodel” for it. The first
valuation in the beginning of this section is on a ZHA with 9 elements, and the second
one is on a ZHA with 10 elements; let’s refer to them as (H9, J9, v9) and (H10, J10, v10),
or just as v9 and v10. Note that the grid for v10 has more ‘0’s; and ∨∗Cubev(v10) (
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∨∗Cubev(v9); for example, we have (7, 3) ∈ ∨∗Cubev(v9) but

(7, 3) 6∈ ∨∗Cubev(v10) ⇒ v10(v((∨)7)) 6≤H10 v10(v((∨)3))
⇒ v10((P

∗∨Q∗)∗) 6≤H10 v10(P
∗∨Q∗)

⇒ v10 is a countermodel for (P ∗∨Q∗)∗ ≤ P ∗∨Q∗
⇒ v10 shows that (P ∗∨Q∗)∗ ≤ P ∗∨Q∗

cannot be a theorem,

so v10 has “more information” — now about the non-existence of tree-like theorems —
than v9.

The full or-cube is “better” than the obvious or-cube, and the v10-cube is “better”
than the v9-cube. Moreover, the full or-cube and the v10-cube coincide, and this means
that the status of every statement of the form v((∨)i) ≤ v((∨)j) can be determined in
the following way: if v((∨)i) ≤ v((∨)j) is true in this partial order

0

1 ccGGGGGGG

2

3 ccGGGGGGG
4

5 GGGGGGG

GGGGGGG

6

7 GGGGGGG

GGGGGGG

0

2;;wwwwwww

1

3;;wwwwwww
4

6wwwwwww
wwwwwww

5

7wwwwwww
wwwwwww

0

4OO1

5OO

2

6OO3

7OO

then v((∨)i) ≤ v((∨)j) is a consequence of the obvious or-cube plus ∨∗C0 (sec.28); if
v((∨)i) ≤ v((∨)j) is not true in the partial order, then it cannot be proved as a theorem,
and the valuation v10 is a countermodel for it.

We can do even better, and extract all information from well-chosen valuations.

Theorem 31.1 Take any statement of the form v((∨)i) ≤ v((∨)j). If it is true in the
valuation below,

v(∨) = v10 =

P
P ∗

Q
Q∗

then it is a theorem and can be proved using the obvious or-cube and ∨∗C0; if the
statement is false in the valuation v(∨), then it cannot be a theorem and v(∨) is a
countermodel that shows that.

We also have:
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Theorem 31.2 Take any statement of the form (P ?∧Q?)? ≤ (P ?∧Q?)?. If it is true
in the valuation below,

v(∧) = P
P ∗

Q
Q∗

then it is a theorem and can be proved using the obvious and-cube and &∗C0; if the
statement is false in the valuation v(∧), then it cannot be a theorem and v(∧) is a
countermodel that shows that.

Theorem 31.3 Take any statement of the form (P ?→Q?)? ≤ (P ?→Q?)?. If it is true
in the valuation below,

v(→) =
P Q

then it is a theorem and can be proved using the obvious implication-cube and →∗C0; if
the statement is false in the valuation v(→), then it cannot be a theorem and v(→) is a
countermodel that shows that.

32 Fragments of Lindenbaum Algebras

33 Polynomial J-operators
It is not hard to check that for any Heyting Algebra H and any Q,R ∈ H the operations
(¬¬), . . ., (∨Q ∧→R) below are J-operators:

(¬¬)(P ) = ¬¬P
(→→R)(P ) = (P→R)→R

(∨Q)(P ) = P ∨Q

(→R)(P ) = P→R

(∨Q ∧→R)(P ) = (P∨Q) ∧ (P→R)

Checking that they are J-operators means checking that each of them obeys J1, J2,
J3. Let’s define formally what are J1, J2 and J3 “for a given F : H → H”:

J1F := (P ≤ F (P ))

J2F := (F (P ) = F (F (P ))

J3F := (F (P ∧ P ′) = F (P ) ∧ F (P ′))
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and:
J123F := J1F ∧ J2F ∧ J3F .

Checking that (¬¬) obeys J1, J2, J3 means proving J123(¬¬) using only the rules
from intuitionist logic from sec.11; we will leave the proof of this, of and J123(→→R),
J123(∨Q), and so on, to the reader.

The J-operator (∨Q ∧→R) is a particular case of building more complex J-operators
from simpler ones. If J,K : H → H, we define:

(J ∧K) := λP :H.(J(P )∧K(P ))

it not hard to prove J123(J∧K) from J123J and J123K using only the rules from intu-
itionistic logic.

The J-operators above are the first examples of J-operators in Fourman and Scott’s
“Sheaves and Logic” ([FS79]); they appear in pages 329–331, but with these names (our
notation for them is at the right):

(i) The closed quotient,

Jap = a ∨ p JQ = (∨Q).

(ii) The open quotient,

Jap = a→ p JR = (→R).

(iii) The Boolean quotient.

Bap = (p→ a)→ a BR = (→→R).

(iv) The forcing quotient.

(Ja ∧ J b)p = (a ∨ p) ∧ (b→ p) (JQ ∧ JR) = (∨Q ∧→R).

(vi) A mixed quotient.

(Ba ∧ Ja)p = (p→ a)→ p (BQ ∧ JQ) = (→→Q ∧→Q).

The last one is tricky. From the definition of Ba and Ja what we have is

(Ba ∧ Ja)p = ((p→ a)→ a) ∧ (a→ p),

but it is possible to prove

((p→ a)→ a) ∧ (a→ p) ↔ ((p→ a)→ p)
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intuitionistically.
The operators above are “polynomials on P,Q,R,→,∧,∨,⊥” in the terminology

of Fourman/Scott: “If we take a polynomial in →,∧,∨,⊥, say, f(p, a, b, . . .), it is a
decidable question whether for all a, b, . . . it defines a J-operator” (p.331).

When I started studying sheaves I spent several years without any visual intuition
about the J-operators above. I was saved by ZHAs and brute force — and the brute
force method also helps in testing if a polynomial (in the sense above) is a J-operator
in a particular case. For example, take the operators λP :H.(P ∧ 22) and (∨22) on
H = [00, 44]:

λP :H.(P ∧ 22) = 20
21
22
22
22

20
21
22
22
22

20
21
22
22
22

10
11
12
12
12

00
01
02
02
02

(∨22) = 42
42
42
43
44

32
32
32
33
34

22
22
22
23
24

22
22
22
23
24

22
22
22
23
24 = 22

The first one, λP :H.(P ∧ 22), is not a J-operator; one easy way to see that is to
look at the region in which the result is 22 — its top element is 44, and this violates
the conditions on slash-operators in sec.24. The second operator, (∨22), is a slash
operator and a J-operator; at the right we introduce a convenient notation for visualizing
the action of a polynomial slash-operator, in which we draw only the contours of the
equivalence classes and the constants that appear in the polynomial.
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Using this new notation, we have:

(¬¬) = (→→00) =

00

(→→22) = 22

(∨42) = 42 (→24) = 24

(∨42 ∧→24) = 42 24

(→→22 ∧→22) =
22

Note that the slashing for (∨42∧→24) has all the cuts for (∨42) plus all the cuts for
(→24), and (∨42∧→24) “forces 42 ≤ 24” in the following sense: if P ∗ = (∨42∧→24)(P )
then 42∗ ≤ 24∗.

34 An algebra of piccs
We saw in the last section a case in which (J ∧K) has all the cuts from J plus all the
cuts from K; this suggests that we may have an operation dual to that, that behaves
as this: (J ∨K) has exactly the cuts that are both in J and in K:

Cuts(J ∧K) = Cuts(J) ∪ Cuts(K)

Cuts(J ∨K) = Cuts(J) ∩ Cuts(K)
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And it J1, . . . , Jn are all the slash-operators on a given ZHA, then

Cuts(J1 ∧ . . . ∧ Jn) = Cuts(J1) ∪ . . . ∪ Cuts(Jk) = (all cuts)
Cuts(J1 ∨ . . . ∨ Jn) = Cuts(J1) ∩ . . . ∩ Cuts(Jk) = (no cuts)

yield the minimal element and the maximal element, respectively, of an algebra of slash-
operators; note that the slash-operator with “all cuts” is the identity map λP : H.P ,
and the slash-operator with “no cuts” is the one that takes all elements to >: λP : H.>.
This yields a lattice of slash-operators, in which the partial order is J ≤ K iff Cuts(J) ⊇
Cuts(K). This is somewhat counterintuitive if we think in terms of cuts — the order
seems to be reversed — but it makes a lot of sense if we think in terms of piccs (sec.20)
instead.

Each picc P on {0, . . . , n} has an associated function ·P that takes each element
to the top element of its equivalence class. If we define P ≤ P ′ to mean ∀a ∈
{0, . . . , n}. aP ≤ aP

′ , then we have this:

0
1
2
3
4
5

012345
••
••
••

a

aP

≤
0
1
2
3
4
5

012345

••
••
••

a

aP
′

≤
0
1
2
3
4
5

012345

••

••••

a

aP
′′

≤
0
1
2
3
4
5

012345

••••••

a

aP
′′′

0|1|2|3|4|5 ≤ 01|23|45 ≤ 01|2345 ≤ 012345

P ≤ P ′ ≤ P ′′ ≤ P ′′′

This yields a partial order on piccs, whose bottom element is the identity function
0|1|2| . . . |n, and the top element is 012 . . . n, that takes all elements to n.

The piccs on {0, . . . , n} form a Heyting Algebra, where > = 01 . . . n, ⊥ = 0|1| . . . |n,
and ‘∧’ and ‘∨’ are the operations that we have discussed above; it is possible to define
a ‘→’ there, but this ‘→’ is not going to be useful for us and we are mentioning it just
as a curiosity. We have, for example:

01234

01|234

OO >

P ∨Q

OO

01|234

0|1|234

??

��
��
��
01|234

01|2|34

__

??
??

??
P ∨Q

P

??

��
��
��
P ∨Q

Q

__

??
??

??

0|1|234

0|1|2|34

__

??
??

??
01|2|34

0|1|2|34

??

��
��
��

P

P ∧Q

__

??
??

??
? Q

P ∧Q

??

��
��
��

0|1|2|34

0|1|2|3|4

OO
P ∧Q

⊥

OO
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35 An algebra of J-operators
Fourman and Scott define the operations ∧ and ∨ on J-operators in pages 325 and 329
([FS79]), and in page 331 they list ten properties of the algebra of J-operators:

(i) Ja ∨ Jb = Ja∨b (∨21) ∨ (∨12) = (∨22)
(ii) Ja ∨ J b = Ja∧b (→32) ∨ (→23) = (→22)

(iii) Ja ∧ Jb = Ja∧b (∨21) ∧ (∨12) = (∨11)
(iv) Ja ∧ J b = Ja∨b (→32) ∧ (→23) = (→33)

(v) Ja ∧ Ja = ⊥ (∨22) ∧ (→22) = (⊥)
(vi) Ja ∨ Ja = > (∨22) ∨ (→22) = (>)
(vii) Ja ∨K = K ◦ Ja
(viii) Ja ∨K = Ja ◦K
(ix) Ja ∨Ba = Ba

(x) Ja ∨Bb = Ba→b

The first six are easy to visualize; we won’t treat the four last ones. In the right
column of the table above we’ve put a particular case of (i), . . ., (vi) in our notation,
and the figures below put all together.

In Fourman and Scott’s notation,

J22

J> = > = J⊥??�����������
J22

J> = > = J⊥__???????????

J21

J22??������
J12

J22 __??????
J32

J22
??������

J23

J22
__??????

J11

J21 __??????
J11

J12??������
J11

J32
__??????

J11

J23
??������

J⊥ = ⊥ = J>

J11 __???????????

J⊥ = ⊥ = J>

J11
??�����������



58 E. Ochs

in our notation,

(22∨)

(>∨) = (λP.>) = (⊥→)
??�������������

(22→)

(>∨) = (λP.>) = (⊥→)
__?????????????

(21∨)

(22∨)
??������

(12∨)

(22∨)
__??????

(32→)

(22→)
??������

(23→)

(22→)
__??????

(11∨)

(21∨)
__??????

(11∨)

(12∨)
??������

(33→)

(32→)
__??????

(33→)

(23→)
??������

(⊥∨) = (λP.P ) = (>→)

(11∨)
__?????????????

(⊥∨) = (λP.P ) = (>→)

(33→)
??�������������

and drawing the polynomial J-operators as in sec.33:

22 22

21 12

32

34

11

33

36 All slash-operators are polynomial
Here is an easy way to see that all slashings — i.e., J-operators on ZHAs — are poly-
nomial. Every slashing J has only a finite number of cuts; call them J1, . . . , Jn. For
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example:

J =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J1 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J2 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J3 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

Each cut Ji divides the ZHA into an upper region and a lower region, and Ji(00)
yields the top element of the lower region. Also, (→→Ji(00)) is a polynomial way of
expressing that cut:

J1 =

(→→ 04) = 04

J2 =

(→→ 23) =
23

J3 =

(→→ 45) =

45

The conjunction of these ‘(→→Ji(00))’s yields the original slashing:

(→→ 04) ∧ (→→ 23) ∧ (→→ 45) =
04

23

45

= J
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37 Open sets of a certain form
A 2-column graph with question marks (a “2CGQ”) is a triple ((P,A), B,D), where
(P,A) is a 2CG and B ⊆ D ⊆ P ; let G = ((P,A), B,D). We represent G graphically
like (P,A), but with ‘0’s, ‘?’s and ’1’s on the points of P , and the expression “C is of
the form G” means B ⊆ C ⊆ D. For example:

0

1

1

0

0
 is of the form


0

?

1

?

0


Informally, a ‘0’ in the graphical representation of a 2CGQ Q means “all ‘C’s of the
form G have a ‘0’ here”, a ‘1’ means “all ‘C’s of the form G have a ‘1’ here”, and a ‘?’
means “some ‘C’s of the form G have ‘0’s there and some have ‘1’s”. More formally, a
2CGQ G corresponds to a partition of P into P0, P1 and P? — the sets of ‘0’s, ‘1’s and
‘?’s of the graphical representation of G — and we have P1 = B, P? = D\B, P0 = P\D,
D = P1 ∪ P?.

Our main use for 2CGQs will be for giving us a nice notation for “the set of open
sets of (P,A) betwen B and D”:

Opens((P,A), B,D) = {U ⊆ P | B ⊆ U ⊆ D and U ∈ OA(P ) }

Note that adding intercolumn arrows reduce sets of opens sets,

Opens


?
1
?
?
0
?

?
1
?
?
0
?
 ⊇ Opens


?
1
?
?
0
?

?
1
?
?
0
?
 ⊇ Opens


?
1
?
?
0
?

?
1
?
?
0
?


because each arrow is a “restriction” (sec.16) on what is considered an open set. We
can propagate ‘1’s forward along arrows like ‘1→?’ and ‘0’s backward along arrows like
‘?→ 0’ without changing the result of ‘Opens(. . .)’:

Opens


?
1
?
?
0
?

?
1
?
?
0
?
 = Opens


1
1
?
?
0
0

1
1
?
?
0
0
 Opens


1
?
?
?

?
?
?
0
?
0
 = Opens


1
?
0
0

1
?
?
0
0
0


38 Propagation
Fix a 2CG (P,A). There are two good, natural ways to get rid of all arrows ‘1→ 0’ in
a subset C ⊆ P : one, called ‘prp1,(P,A)’ or ‘prp1’, “propagates the ‘1’s forward”, and the
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other one, called ‘prp0’ or ‘prp1,(P,A)’, “propagates the ‘0’s backward”. An example:

prp0

(
0
1

1
0
0
)

=

(
0
0

1
0
0
)

prp1

(
0
1

1
0
0
)

=

(
1
1

1
1
0
)

It easy to see that prp1(C) returns the smallest open set containing C, and prp0(C)
returns the largest open set contained in C,

The interior of a set S in a topology U on P is the biggest open set in U contained
in S, and, dually, the cointerior of a set S is the smallest open set in U containing S.
In finite topologies cointeriors always exist.

Theorem 38.1 For any 2CG (P,A) and S ⊆ P we have

int(S) = prp0(S) ⊆ S ⊆ prp1(S) = coint(S).

We can define propagations for 2CGQs in a way that changes only the ‘?’s. If
G = ((P,A), B,D) is a 2CGQ, then prp1(G) propagates forward only the ‘1’s in arrows
like ‘1→?’, and prp0(G) propagates backward only the ‘0’s in arrows like ‘?→ 0’.

The operations ‘prp1’ and ‘prp0’ on 2CGQs need not commute:

prp1

(
prp0

(
?
1

0
?
))

=
(

0
1

0
0
)

prp0

(
prp1

(
?
1

0
?
))

=
(

1
1

0
1
)

but they can only fail to commute when Opens(G) = ∅. When they commute we will
write their composite as ‘prp’.

Theorem 38.2 Let G = ((P,A), B,D) be a 2CGQ with Opens(G) 6= ∅ and let G′ =
prp(G) = Opens((P,A), B′, D′), P ′1 = B′, P ′? = D′\B′, P ′1 = P\D′. Then:

a) In G′ everything below a ‘1’ is also ‘1’,
b) In G′ everything above a ‘0’ is also ‘0’,
c) B′ = P ′1 is an open set,
d) D′ = P ′1 ∪ P ′? = P\P ′0 is an open set,
e) B′ = prp1(B) = coint(B),
f) D′ = prp0(D) = int(D),
g) B′ = pile(ab) for some ab,
h) D′ = pile(ef) for some ef ,
i) B′ ∈ Opens(G) = Opens(G′),
j) D′ ∈ Opens(G) = Opens(G′).
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An example:

G =


1
?
?
?

?
?
?
0
?
0
 G′ = prp(G) =


1
?
0
0

1
?
?
0
0
0
 = ((P,A), pile(11), pile(23))

The next theorem translates this to ZHAs, and shows that when Opens(G) 6= ∅ then
it returns an interval in a ZHA (in the sense of sec.20),

Theorem 38.3 Let G = ((P,A), B,D) be a 2CGQ with Opens(G) 6= ∅ and let G′ =
prp(G) = Opens((P,A), B′, D′), ab = pile−1(B′), ef = pile−1(D′), I = pile−1(Opens(G)) =
pile−1(Opens(G′)), and let H be the ZHA generated by (P,A), i.e., H = pile−1(OA(P )).
Then:

a) ab is the minimal point of I,
b) ef is the maximal point of I,
c) I ⊆ H,
d) I = [ab, ef ] ∩H,
e) if A has no intercolumn arrows then I = [ab, ef ].

With Theorem 38.3 we can extend the last example to:

G =


1
?
?
?

?
?
?
0
?
0
 G′ = prp(G) =


1
?
0
0

1
?
?
0
0
0
 = ((P,A), pile(11), pile(23))

Opens(G) = Opens(G′) = I oo pile

pile−1
// [11, 23] ∩

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

In the next sections we will see that in some important cases the results of Opens(. . .)
coincide with J-equivalence classes.

39 The set of relevant points of a slashing
We saw in sec.20 that a slashing on a ZHA H can be represented a pair (L,R) of piccs,
that we drew in a V-shaped diagram; let’s write S for the set of numbers above the
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cuts in the V-shaped diagram, converting them to the notation for elements of the left
and the right columns of 2-column graphs:

J =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

(L,R) =

0
1

2
3

4

0
1
2
3
4
5
6

S = {1_, _4,_6}

We also saw (sec.26) that on ZHAs there is a bijection between slashings and J-
operators. Let relev(J) be the operation that obtains the set S for a J-operator J :
relev(J) = {1_, _4,_6} for the J above. We will call S ⊆ P the set of relevant points
of the J-operator J , and Q = qmarks(J) = P\S will be the set of (points that will be
replaced by) question marks by J . Note that we can also go from a set Q ⊆ P to a
slashing and a J-operator, but we will not need a notation for that.

We can define the operation that receives a C ⊆ P and “forgets the information on
the points of Q” on C, returning a 2CGQ, as:

forget(P,A),Q(C) = ((P,A), C\Q,C ∪Q)

for example:

forget(P,A),Q(pile(12)) =


1
?
?
?

?
?
?
0
?
0


Note that

prp(forget(P,A),Q(pile(12))) =


1
?
0
0

1
?
?
0
0
0


= ((P,A), pile(11), pile(23))

and that:

pile−1(Opens(prp(forget(P,A),Q(pile(12))))) = [11, 23] ∩H

= [coJ(12), J(12)] ∩H

= [12]J

this holds in general, as we will see soon.
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40 Rectangular versions
The “rectangular version” of a 2CG, a ZHA and a J-operator are defined as this. Let
(P,A) be a 2CG and H its associated ZHA, and J : H → H a J-operator on H; then A′

is A minus its intercolumn arrows, H ′ is the (rectangular) ZHA associated to (P,A′),
and J ′ : H ′ → H ′ is J-operator on H ′ that has the same cuts as J . The primes on A′,
H ′ and J ′ will always mean from here on that we are on the rectangular versions. Let
Q = qmarks(J) = qmarks(J ′).

The rectangular versions for the (P,A) and the J that we are using in our examples
are:

(P,A′) =


1_
2_
3_
4_

_1

_2

_3

_4

_5

_6


J ′ =
40
41
42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

.

Take any C ⊆ P , The result of forget(P,A′),Q(C) is always of this form,

forget(P,A′),Q(C) =


a
?
?
?

?
?
?
b
?
c


for some a, b, c ∈ {0, 1}; moreover, if C is open then forget(P,A′),Q(C) doesn’t have ‘1’s
above ‘0’s. Take any C ⊆ P open in (P,A); C will be of the form pile(cd) for some
cd ∈ H ′. Let G = forget(P,A′),Q(C). The action of prp on ‘G’s of this form is particularly
simple: each column of G is made of blocks of consecutive ‘?’s separated by ‘0’s or ‘1’s,
and prp acts homogeneously on each block, leaving ‘?’s in at most one block in each
column. For example, if a = b = 1 and c = 0 then

prp(forget(P,A′),Q(C)) =


1
?
?
?

1
1
1
1
?
0


It is easy to see that:

Theorem 40.1 If C = pile(cd) then pile−1(Opens(prp(forget(P,A′),Q(C)))) is a J ′-equivalence
class.

Theorem 40.2 If C = pile(cd) then pile−1(Opens(prp(forget(P,A′),Q(C)))) is [coJ ′(cd), J ′(cd)].
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Theorem 40.3 Suppose that cd ∈ H (instead of cd ∈ H ′) and let:

C = pile(cd)

G = forget(P,A′),Q(C)

G′ = prp(forget(P,A′),Q(C))

G′′ = prp(forget(P,A),Q(C))

I ′ = pile−1(Opens(G′))

I ′′ = pile−1(Opens(G′′))

then G′ is a “rectangular” (and “propagated”) 2CGQ, and I ′ = [coJ ′(cd), J ′(cd)] is a
“rectangular interval”; G′′ is G′ plus the intercolumn arrows, and with the propagations
having been done through the intercolumn arrows too. It is not hard to see that:

a) Opens(G) = Opens(G′) ⊇ Opens(G′′)
b) I ′′ = I ′ ∩H
c) cd ∈ I ′′

d) I ′′ = [coJ(cd), J(cd)] ∩H
e) pile(coJ(cd)), pile(J(cd)) ∈ I ′′

f) G′′ = ((P,A), pile(coJ(cd)), pile(J(cd)))
g) G′′ = ((P,A), coint(C\Q), int(C ∪Q)), so:
h) pile(coJ(cd)) = coint(C\Q) = prp1(C\Q) and
i) pile(J(cd)) = int(C ∪Q) = prp0(C ∪Q),
j) coJ(cd)) = pile−1(coint(C\Q)) = pile−1(prp1(C\Q)) and
k) J(cd) = pile−1(int(C ∪Q)) = pile−1(prp0(C ∪Q)).

A way to visualize what Theorem 40.3 means is to define B,B′, B′′, D,D′D′′ like
this:

(B,D) = (C\Q,C ∪Q)

G′ = ((P,A′), B′, D′)

G′′ = ((P,A), B′′, D′′)

then, in the example we are using, omitting some ‘pile’s and ‘pile−1’s, we have:

J =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J ′ =
40
41
42
43
44
45
46

30
31
32
33
34
35
36

20
21
22
23
24
25
26

10
11
12
13
14
15
16

00
01
02
03
04
05
06

C

B′

D′

C
B′′

D′′

Theorem 40.3 shows several ways to calculate B′, C ′, B′′, C ′′.



66 E. Ochs

41 Sub-2-column graphs
Another way to understand the properties of the operation forget(P,A),Q is to think that
it relates two topologies, OA(P ) and OA|S(S) (mnemonic: S is a “smaller set”, and
S = relev(J) = P\Q). We will sometimes denote OA(P ) and OA|S(S) as just O(P ) and
O(S); O(S) is a restriction of O(P ) to S in the following sense: the open sets of O(S)
are exactly the sets of the form U ∩ S, where U ∈ OA(P ).

The topology O(S) = OA|S(S) comes from a “sub-2-column graph” (S,A|S) of
(P,A), where the set of arrows A|S can be obtained from A and S by

A|S := (A∗ ∩ (S × S))ess,

which means: take the transitive-reflexive closure A∗ of A, which yields a partial order
on P , and restrict that order to S by taking A∗ ∩ (S × S); then (note: this last step
is optional!) drop the redundant arrows in A∗ ∩ (S × S) and keep only the “essential”
ones, which are the ones that can’t be deleted without changing the order.

For clarity, we will draw the arrows in (S,A|S) as in the original 2CG (P,A), even
though some arrows may look as coming from or going to nonexistent points; a really
honest drawing of (S,A|S) in the example below would be the one at the right, that
has only one intercolumn arrow, 1_← _6, and only one vertical arrow, _6→ _4.

(P,A) =


1_
2_
3_
4_

_1

_2

_3

_4

_5

_6


(S,A|S) =


1_
·
·
·

·
·
·

_4

·
_6


=


1_

_4

_6


A sub-2-column graph is a graph (S,A|S) generated by a 2CG (P,A) and an S ⊆ P
by the procedure above: A|S = (A∗ ∩ (S × S))ess.

Theorem 41.1 Fix a ZHA H and a J-operator J on it, and from that produce (P,A),
U = OA(P ), S, and Q. We clearly have bijections between:

1) the set of fixed points of J , { ef ∈ H | J(ef) = ef }
2) the set of fixed points of coJ , { ab ∈ H | coJ(ab) = ab },
3) the image of J , J(H) = { J(cd) | cd ∈ H },
4) the image of coJ , coJ(H) = { coJ(cd) | cd ∈ H },
5) the set of J-equivalence classes of H, H/J = { [cd]J | cd ∈ H },
6) the elements ef ∈ H such that pile(ef) = int(pile(ef) ∪Q),
7) the elements ab ∈ H such that pile(ab) = coint(pile(ab)\Q),
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8) the sets U ⊆ O(P ) such that U = int(U ∪Q),
9) the sets W ⊆ O(P ) such that W = coint(W\Q),
10) the sets U ⊆ P such that U = int(U ∪Q),
11) the sets W ⊆ P such that W = coint(W\Q),
12) the opens sets in O(S).

The partial order on O(S) is given by inclusion; some of the corresponding partial
orders on the other sets of Theorem 1 are not so obvious.

Theorem 41.2 Let ab, cd ∈ H, A = pile(ab), B = pile(cd), A′ = A ∩ S, B′ = B ∩ S.
The following are all equivalent:

1) A′ ⊆ B′,
2) A\Q ⊆ B\Q,
2’) A ∪Q ⊆ B ∪Q,
3) coint(A\Q) ⊆ coint(B\Q),
3’) int(A ∪Q) ⊆ int(B ∪Q),
4) prp1(A\Q) ⊆ prp1(B\Q)
4’) prp0(A ∪Q) ⊆ prp0(B ∪Q)
5) coJ(ab) ≤ coJ(cd),
5’) J(ab) ≤ J(cd),
6) inf([ab]J) ≤ inf([cd]J),
6’) sup([ab]J) ≤ sup([cd]J).

Items 6 and 6’ give us a way to endow H/J with a partial order. Remember
that sup([ab]J) = J(ab) and inf([ab]J) = coJ(ab); we say that [ab]J ≤ [cd]J when
J(ab) ≤ J(cd), or, equivalently, coJ(ab) ≤ coJ(cd).

Theorem 41.3 For any ab, cd, ef ∈ H we have:
1) [cd]J ≤ [ef ]J iff cd ≤ J(ef),
2) [ab]J ≤ [cd]J iff coJ(ab) ≤ cd.

We can put that in a diagram,

[ef ]J J(ef)� sup //

[cd]J cdoo �

[ab]J coJ(ab)�
inf
//

[ef ]J

[cd]J

OO
J(ef)

cd

OO
oo //

[cd]J

[ab]J

OO
cd

coJ(ab)

OO

oo //

that can be read as a categorical statement: the functor [·]J : H → H/J has a left
adjoint inf : H/J → H and a right adjoint sup : H/J → H, where inf returns the
smallest element of a J-equivalence class, and sup returns the biggest.
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42 J-operators as adjunctions
The last diagram of the last section can be translated to topological language:

O(S) O(P )
f∗ //O(S) O(P )oo f∗O(S) O(P )
f !

//

S P
f //

U int(U ∪Q)� f∗ //

V ∩ S Voo f∗ �

W coint(U\Q)�
f ! //

S P
f //

U

V ∩ S

OO int(U ∪Q)

V

OO
oo //

V ∩ S

W

OO V

coint(U\Q)

OO

oo //

The notation used in the diagram above is essentially the one from figures 6 and 7 in
[Och13]; the “external view” is at the left,“internal view” is at the right, the adjunction
is f ! a f ∗ a f∗, and the diagram shows that f∗(U) = int(U ∪ Q), f ∗(V ) = V ∩ S and
f !(W ) = coint(U\Q) (where int and coint use the topology O(P )).

The order in which things are constructed in the diagram above is different from
last section, though. Now we start with a finite set P , a topology O(P ), and a subset
S ⊆ P , and we define O(S) by restriction:

O(S) = {V ∩ S | V ∈ O(P ) }

we define Q as P\S, we let f : S → P be the inclusion and f ∗(V ) be V ∩ S; then
it turns out (theorem!) that the f ! and f∗ as defined above are the left and the right
adjoints of f ∗ — and J and coJ are built from f !, f ∗ and f∗: the definitions

J(V ) = f∗(f
∗(V ))

coJ(V ) = f !(f ∗(V ))

yield a J-operator J : O(P ) → O(P ) and its ‘co’ version, that returns the smallest
element in each equivalence class; and if O(P ) = OA(P ) for some 2CG (P,A), then we
can define J and coJ in this other way,

J(cd) = pile−1(f∗(f
∗(pile(cd))))

coJ(cd) = pile−1(f !(f ∗(pile(cd))))

that yields a J-operator (and its ‘co’ version) on the ZHA H generated by the 2CG
(P,A).

This “topological version” of the adjunction is a nice concrete starting point for
understanding toposes and geometric morphisms between them — or, actually, for
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introducing geometric morphisms to “children” who prefer to start with finite examples
in which everything can be calculated explicitly. The toposes involved are SetO(S)

op

and SetO(P )op , and the adjunction f ! a f ∗ a f∗ presented above acts only on the
subobjects of the terminal of each topos — it needs to be extended to an (essential)
geometric morphism between these toposes. This, and several concepts from section A4
of [Joh02], will be treated in a sequel of this paper, in a joint work with Peter Arndt.

[Awo06] [Joh02] [DP02] [Och13] [FS79] [Bel88]
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