
1

Dednat6: an extensible
(semi-)preprocessor for

LuaLATEX that understands
diagrams in ASCII art

Eduardo Ochs - UFF
TUG 2018 - Rio de Janeiro, 20-22 jul 2018
http://angg.twu.net/dednat6.html

2018tug-dednat6 July 18, 2018 20:53

http://angg.twu.net/dednat6.html

2

Prehistory: dednat.icn
My master’s thesis was partly about Natural Deduction,
and it had lots of tree diagrams like these:

[x]1 f

f(x) g

g(f(x))

λx.g(f(x))
1

[a]1 a→ b

b b→ c

c

a→ c
1

I used proof.sty to typeset them, but the code
for each diagram was so opaque that I had to keep
a 2D ascii art version of each diagram in comments
so that I wouldn’t get lost...

3

Prehistory: dednat.icn (2)
...like this:

[x]1 f

f(x) g

g(f(x))

λx.g(f(x))
1

%: [x]^1 f
%: --------
%: f(x) g
%: --------
%: g(f(x))
%: ----------1
%: λx.g(f(x))
%:
$$\infer[{1}]{ \mathstrut λx.g(f(x)) }{
 \infer[{}]{ \mathstrut g(f(x)) }{
 \infer[{}]{ \mathstrut f(x) }{
 \mathstrut [x]^1 &
 \mathstrut f } &
 \mathstrut g } } }
$$

4

Prehistory: dednat.icn (3)
...then I realized that I could automate the boring part.
I made the syntax of the 2D ascii art trees more rigid
and wrote a parser (in Icon!) that understood it.
A tree with a name tag like ^foo below it
would become a \defded{foo}{...} —
dednat.icn would only look for trees in ‘%:’-lines,

%: [x]^1 f
%: --------
%: f(x) g
%: --------
%: g(f(x))
%: ----------1
%: λx.g(f(x))
%:
%: ^foo

//

\defded{foo}{
 \infer[{1}]{ \mathstrut λx.g(f(x)) }{
 \infer[{}]{ \mathstrut g(f(x)) }{
 \infer[{}]{ \mathstrut f(x) }{
 \mathstrut [x]^1 &
 \mathstrut f } &
 \mathstrut g } } }

and would put the ‘\defded’s in another file...

5

Prehistory: dednat.icn (4)
So that I could have this, in myfile.tex:

\input myfile.auto.dnt
%
%: [x]^1 f
%: --------
%: f(x) g
%: --------
%: g(f(x))
%: ----------1
%: λx.g(f(x))
%:
%: ^foo
%
$$\ded{foo}$$

//

[x]1 f

f(x) g

g(f(x))

λx.g(f(x))
1

Running ‘dednat.icn myfile.tex’ would generate
the file myfile.auto.dnt.

6

Prehistory: dednat4.lua
dednat.icn understood one kind of “head”:
‘%:’-lines would be scanned for trees.

dednat4.lua understood three kinds of heads:
‘%:’-lines would be scanned for trees,
‘%L’-lines contained Lua code,
‘%D’-lines contained diagrams in a Forth-based language.
New heads could be added dynamically.

(Actually I also had a head to define abbreviations like ‘->’ → ‘\to ’)

7

Dednat4.lua’s language for diagrams
Based on Forth: stack-based, and we can define words
that affect parsing — that eat the next word or all
the rest of the line. Some words parse a 2D grid with
coordinates for nodes; other words join nodes with arrows.
Generates code for diagxy.tex (a front-end for xypic).

%D diagram BCCL-std
%D 2Dx 100 +45 +55 +45
%D 2D 100 B0 <====================== B1
%D 2D -\\ -\\
%D 2D | \\ | \\
%D 2D v \\ v \\
%D 2D +20 B2 <\\> B2' ============== B3 \\
%D 2D /\ \/ /\ \/
%D 2D +15 \\ B4 \\ B5
%D 2D \\ - \\ -
%D 2D \\ | \\|
%D 2D \\v \v
%D 2D +20 B6 <===================== B7
%D 2D
%D 2D +10 b0 |---------------------> b1
%D 2D |-> |->
%D 2D +35 b2 |--------------------> b3
%D ((
%D B0 .tex= f^{\prime*}P B1 .tex= P
%D B2 .tex= z^{\prime*}f^*Σ_zP B3 .tex= z^*Σ_zP
%D B4 .tex= Σ_{z'}f^{\prime*}P B5 .tex= Σ_zP
%D B6 .tex= f^*Σ_zP B7 .tex= Σ_zP
%D B2' .tex= f^{\prime*}z^*Σ_zP
%D B0 B1 <-| B0 B2 -> B0 B2' -> B1 B3 -> B2 B2' <-> B2' B3 <-|
%D B0 B4 |-> B1 B5 |->
%D B2 B6 <-| B3 B7 <-|
%D B6 B7 <-| B5 B7 -> .plabel= r \id
%D B4 B6 -> sl_ .plabel= l \ B4 B6 <- sl^ .plabel= r \BCCL
%D B0 B2' midpoint B1 B3 midpoint harrownodes nil 20 nil <-|
%D B0 B2 midpoint B4 B6 midpoint dharrownodes nil 20 nil |->
%D B1 B3 midpoint B5 B7 midpoint dharrownodes nil 20 nil <-|
%D))
%D ((b0 .tex= X×_{Y}Z b1 .tex= Z b2 .tex= X b3 .tex= Y
%D b0 b1 -> .plabel= b f'
%D b0 b2 -> .plabel= l z'
%D b1 b3 -> .plabel= r z
%D b2 b3 -> .plabel= a f
%D b0 relplace 20 7 \pbsymbol{7}
%D))
%D enddiagram
%
$$\diag{BCCL-std}$$

//

f ′∗P Poo �f ′∗P

z′∗f∗ΣzP
��

f ′∗P

f ′∗z∗ΣzP
((QQ

QQQ
QQQ

P

z∗ΣzP
��

z′∗f∗ΣzP f ′∗z∗ΣzPoo // f ′∗z∗ΣzP z∗ΣzPoo �

f ′∗P

Σz′f ′∗P

�

##F
FF

FF
FF

FF
FF

FF
P

ΣzP

�

##F
FF

FF
FF

FF
FF

FF

z′∗f∗ΣzP

f∗ΣzP

cc

�F
FF

FF
FF

FF
FF

FF
z∗ΣzP

ΣzP

cc

�F
FF

FF
FF

FF
FF

FF

f∗ΣzP ΣzPoo �

ΣzP

ΣzP

id��

Σz′f ′∗P

f∗ΣzP

\
��

Σz′f ′∗P

f∗ΣzP

OO
BCCL

oo �

�
##FF

FFF cc

�F
FFF

F

X ×Y Z Z
f ′

//X ×Y Z

X

z′

##F
FF

FF
FF

FF
FF

FF
Z

Y

z

##F
FF

FF
FF

FF
FF

FF
F

X Y
f //

8

Dednat4.lua’s language for diagrams (2)
%D diagram adj
%D 2Dx 100 +25
%D 2D 100 LA <-| A
%D 2D | |
%D 2D | <--> |
%D 2D v v
%D 2D +25 B |-> RB
%D 2D
%D 2D +15 \catB \catA
%D 2D
%D ((LA A <-|
%D LA B -> A RB ->
%D B RB |->
%D LA RB harrownodes nil 20 nil <->
%D \catB \catA <- sl^ .plabel= a L
%D \catB \catA -> sl_ .plabel= b R
%D))
%D enddiagram
%D
$$\diag{adj}$$

LA Aoo �LA

B
��

A

RB
��

B RB� //

oo //

B Aoo L
B A

R
//

9

Dednat4.lua’s language for diagrams (3)
(See my “Bootstrapping a Forth in 40 lines of Lua code”
in the Lua Gems book... section ‘Modes”)
%D diagram adj
%D 2Dx 100 +25
%D 2D 100 LA <-| A
%D 2D | |
%D 2D | <--> |
%D 2D v v
%D 2D +25 B |-> RB
%D 2D
%D 2D +15 \catB \catA
%D 2D
%D ((LA A <-|
%D LA B -> A RB ->
%D B RB |->
%D LA RB harrownodes nil 20 nil <->
%D \catB \catA <- sl^ .plabel= a L
%D \catB \catA -> sl_ .plabel= b R
%D))
%D enddiagram
%D
$$\diag{adj}$$

The words in red
“eat text”.
2D and 2Dx eat
the rest of the line
as a grid, and define
nodes with coordinates.
.plabel modifies the
arrow at the top of the
stack: ‘placement’ ‘label’

10

Dednat4.lua’s language for diagrams (4)
(See my “Bootstrapping a Forth in 40 lines of Lua code”
in the Lua Gems book... section ‘Modes”)
%D diagram adj
%D 2Dx 100 +25
%D 2D 100 LA <-| A
%D 2D | |
%D 2D | <--> |
%D 2D v v
%D 2D +25 B |-> RB
%D 2D
%D 2D +15 \catB \catA
%D 2D
%D ((LA A <-|
%D LA B -> A RB ->
%D B RB |->
%D LA RB harrownodes nil 20 nil <->
%D \catB \catA <- sl^ .plabel= a L
%D \catB \catA -> sl_ .plabel= b R
%D))
%D enddiagram
%D
$$\diag{adj}$$

2D and 2Dx eat
the rest of the line
as a grid, and define
nodes with coordinates.
Arrow words connect the two
topmost nodes in the stack.
harrownodes creates two
phantom nodes for a middle
horizontal arrow.

11

Dednat4.lua’s language for diagrams (5)
For the sake of completeness... diagram resets several tables,
enddiagram outputs the table arrows as diagxy code,
sl^ and sl_ slide the topmost arrow in the stack,
The ‘))’ in a ((. . .)) block drops all top items from the
stack until the depth becomes what it was at the ‘((’,
we can put Lua code in ‘%L’ lines between ‘%D’ lines, and...
require "diagforth"

storenode {TeX="a", tag="a", x=100, y=100}
storenode {TeX="b", tag="b", x=140, y=100}
= nodes

storearrow(DxyArrow {from="a", to="b", shape="|->",
 slide="5pt", label="up",
 placement="a"})
storearrow(DxyArrow {from="a", to="b", shape=".>"})
storearrow(DxyPlace {nodes["a"]})
storearrow(DxyLiteral {"literal foobar"})
= arrows

print(arrow_to_TeX(arrows[1]))
print(arrows[2]:TeX())
print(arrows[3]:TeX())
print(arrows[4]:TeX())
print(arrows_to_TeX())

← this Lua code
shows how the
low-level
functions
work...

12

Dednat6: a semi-preprocessor
Dednat4 is a real pre-processor —
it generates a foo.auto.dnt from foo.tex,
and it runs before LATEX.

In Dednat6 the Lua code that processes the
lines with heads like ‘%L’, ‘%:’, ‘%D’, etc,
pretends to run at the same time as TEX...
In fact there are synchronization points.
Each tree in a ‘%:’ block generates a ‘\defded’
each diagram in a ‘%D’ block generates a ‘\defdiag’...
‘\pu’ means “process all pending heads until the
current line”, and send the defs to LATEX—

13

Dednat6: a semi-preprocessor (2)
‘\pu’ means “process all pending heads until the
current line”, and send the defs to LATEX—
This is implemented using “blocks” with i and j fields
for their starting and ending lines.
%D diagram triangle
%D 2Dx 100 +20
%D 2D 100 A --> B
%D 2D \ |
%D 2D v v
%D 2D +20 C
%D 2D
%D ((A B -> B C -> A C ->
%D))
%D enddiagram

$$\pu \diag{triangle}$$

%: A A->B
%: -------
%: B C
%: --------
%: B/\C
%:
%: ^a-tree
%:

$$\pu \ded{a-tree}$$

‘%D’ block: lines 1–10
First ‘\pu’: line 12
‘%:’ block: lines 15–22
Second ‘\pu’: line 24

Whole .tex file: lines 1–24

14

Dednat6: a semi-preprocessor (3)
‘\pu’ means “process all pending heads until the
current line”, and send the defs to LATEX—
This is implemented using “blocks” with i and j fields
for their starting and ending lines.
%D diagram triangle
%D 2Dx 100 +20
%D 2D 100 A --> B
%D 2D \ |
%D 2D v v
%D 2D +20 C
%D 2D
%D ((A B -> B C -> A C ->
%D))
%D enddiagram

$$\pu \diag{triangle}$$

%: A A->B
%: -------
%: B C
%: --------
%: B/\C
%:
%: ^a-tree
%:

$$\pu \ded{a-tree}$$

tf = Block {i=1, j=24, nline=1, ...}

First ‘\pu’: line 12
processuntil(12)
processlines(1, 11)
processblock {head="%D", i=1, j=10}
output("\\defdiag{triangle}{...}")
nline=13

tf becomes {i=1, j=24, nline=13, ...}

Second ‘\pu’: line 24
processuntil(24)
processlines(13, 23)
processblock {head="%:", i=15, j=22}
output("\\defded{a-tree}{...}")
nline=25

15

Dednat6: a semi-preprocessor (4)
%D diagram triangle
%D 2Dx 100 +20
%D 2D 100 A --> B
%D 2D \ |
%D 2D v v
%D 2D +20 C
%D 2D
%D ((A B -> B C -> A C ->
%D))
%D enddiagram

$$\pu \diag{triangle}$$

%: A A->B
%: -------
%: B C
%: --------
%: B/\C
%:
%: ^a-tree
%:

$$\pu \ded{a-tree}$$

tf = Block {i=1, j=24, nline=1, ...}

First ‘\pu’: line 12
processuntil(12)
processlines(1, 11)
processblock {head="%D", i=1, j=10}
output("\\defdiag{triangle}{...}")
nline=13

tf becomes {i=1, j=24, nline=13, ...}

Second ‘\pu’: line 24
processuntil(24)
processlines(13, 23)
processblock {head="%:", i=15, j=22}
output("\\defded{a-tree}{...}")
nline=25

16

Downloading and testing
I gave up (temporarily?) keeping a package or a git repo
of Dednat6... but if you run something like this in a shell,
rm -rfv /tmp/edrx-latex/
mkdir /tmp/edrx-latex/
cd /tmp/edrx-latex/
See: http://angg.twu.net/LATEX/2017planar-has-1.pdf
wget http://angg.twu.net/LATEX/2017planar-has-1.tgz
tar -xvzf 2017planar-has-1.tgz
lualatex 2017planar-has-1.tex

you download and unpack a .tgz with the full source code
for 2017planar-has-1.pdf, including a full version of
Dednat6, and all the (non-standard) TEX files...
The home page of dednat6
http://angg.twu.net/dednat6.html
points to several such .tgzs, both simple and complex.

http://angg.twu.net/dednat6.html

17

Extensions
It is easy to extend Dednat6 with new heads...
For example, for these slides I created a head ‘%V’
for a Dednat6-based verbatim mode...
the Lua code was initially just this:
registerhead "%V" {
 name = "myverbatim",
 action = function ()
 local i,j,verbatimlinesorig = tf:getblock()
 verbatimlines = verbatimlinesorig
 end,
}

Dednat6 would take each block of ‘%V’ lines and
store its contents in the global variable verbatimlines,
that I would process in Lua in ‘%L’ lines to generate
the LATEX code that I want...

18

Hacking
Hacking something usually consists of these stages:
1) “reading”: understanding docs, data structures, code
2) making tests, dumping data structures
3) “writing”: implementing new things

Here’s how to do (1):
Learn a tiny bit of Emacs and eev:
http://angg.twu.net/#eev
and run the “eepitch blocks” in the Lua source files...

http://angg.twu.net/#eev

19

Eepitch blocks in comments in Lua files
This is a comment block in dednat6/diagforth.lua:
--[==[
* (eepitch-lua51)
* (eepitch-kill)
* (eepitch-lua51)
require "diagforth"
storenode {TeX="a", tag="a", x=100, y=100}
storenode {TeX="b", tag="b", x=140, y=100}
= nodes

storearrow(DxyArrow {from="a", to="b", shape="|->",
 slide="5pt", label="up",
 placement="a"})
storearrow(DxyArrow {from="a", to="b", shape=".>"})
storearrow(DxyPlace {nodes["a"]})
storearrow(DxyLiteral {"literal foobar"})
= arrows

--]==]

It is an “e-script” — an executable log of an experiment
that I was doing. It can be “played back” by typing
‘F8’s in Emacs+eev — an ‘F8’ on a red star line runs
that line as Lisp code (→ set up a target buffer)...

20

Eepitch blocks in comments in Lua files (2)
--[==[
* (eepitch-lua51)
* (eepitch-kill)
* (eepitch-lua51)
require "diagforth"
storenode {TeX="a", tag="a", x=100, y=100}
storenode {TeX="b", tag="b", x=140, y=100}
= nodes

(...)
--]==]

An ‘F8’ on a red star line runs that line as Lisp code
(→ set up a target buffer with a Lua interpreter)
and an ‘F8’ on a non-red star line sends that line to
the target buffer as if the user had typed it...

21

REPLs
Here’s a screenshot.

Left Emacs window: the e-script buffer. The cursor is there: .
We have just executed an eepitch block with ‘F8’s.
Right Emacs window: the target buffer, with a terminal
running Lua 5.1 in interactive (Read/Eval/Print/Loop) mode.
Blue ‘>’s: Lua prompts. Bold white: user input (sent with ‘F8’s).
Here we used just Lua, not LuaLATEX.

22

REPLs (2)
It is also possible to run Rob Hoelz’s lua-repl
from inside LuaLATEX. Here’s a screenshot.

When you are a Bear of Very Little Brain —
like me — LuaTEX’s interface to TEX boxes
looks very hard... lua-repl may help.

23

HEY!!!
From http://angg.twu.net/dednat6.html:

I’ve stopped trying to document dednat6 because
1) I don’t have a mental image of who I am writing for,
2) I get far too little feedback,
3) all of the feedback that I got came from people who felt
that I was not writing for them — my approach, tone and
choice of pre-requisites were all wrong.
If you would like to try dednat6, get in touch, let’s chat —
please!

Maybe I can typeset in 20 minutes a diagram that took you
a day, maybe I can implement an extension that you need...

http://angg.twu.net/dednat6.html

