Dednat6: an extensible

(semi-)preprocessor for

LualATEX that understands
diagrams in ASCII art

Eduardo Ochs - UFF

TUG 2018 - Rio de Janeiro, 20-22 jul 2018
http://angg.twu.net/dednat6.html

2018tug-dednat6 July 18, 2018 20:53

http://angg.twu.net/dednat6.html

Prehistory: dednat.icn
My master’s thesis was partly about Natural Deduction,
and it had lots of tree diagrams like these:

[]' f a]' a—b
f(x) g b b—c
(@) <
Az.g(f(x)) a—c

I used proof.sty to typeset them, but the code
for each diagram was so opaque that I had to keep
a 2D ascii art version of each diagram in comments
so that I wouldn’t get lost...

Prehistory: dednat.icn (2)
...like this:

2" f

eg(f(a)) |

Prehistory: dednat.icn (3)

...then I realized that I could automate the boring part.
I made the syntax of the 2D ascii art trees more rigid
and wrote a parser (in Icon!) that understood it.

A tree with a name tag like “foo below it

would become a \defded{foo}{...} —

dednat.icn would only look for trees in ‘% : -lines,

%o D01 of \defded{foo}{

.;-; i \infer [{1}]{ \mathstrut Ax.g(f(x)) H
g0 X B \infer [{}]{ \mathstrut g(£(x)) H

i g(£(x)) . \infer [{}]{ \mathstrut f(x)

4-3 g \mathstrut [x]"1 &

gio et \mathstrut f } &

9 ~foo \mathstrut g } } }

and would put the ‘\defded’s in another file...

Prehistory: dednat.icn (4)
So that I could have this, in myfile.tex:

'\input myfile.auto.dnt

f bt] f
o1 e BT

i gaw) A
:; Ax.g(f(x)) g(f(fb)) 1
ki too Az.g(f())
$$\ded{f00}$$

Running ‘dednat.icn myfile.tex’ would generate
the file myfile.auto.dnt.

Prehistory: dednat4.lua
dednat.icn understood one kind of “head”:
% :’-lines would be scanned for trees.

dednat4.lua understood three kinds of heads:

*%:’-lines would be scanned for trees,

‘%L’-lines contained Lua code,

‘%D’-lines contained diagrams in a Forth-based language.
New heads could be added dynamically.

(Actually I also had a head to define abbreviations like ‘->" — ‘\to ’)

Dednat4.lua’s language for diagrams

Based on Forth: stack-based, and we can define words
that affect parsing — that eat the next word or all

the rest of the line. Some words parse a 2D grid with
coordinates for nodes; other words join nodes with arrows.
Generates code for diagxy.tex (a front-end for xypic).

P p
fL E - l\
2Z*f*%,P 8, P ~————2*5, P
O S P N 5.P
il?BC(L \Lul

P
XxyZ ——— 7

RN

Dednat4.lua’s language for diagrams (2)

%D diagram adj

%D 2Dx 100 +25

%D 2D 100 LA <-| A

RS

%D 2D <>

%D 2D v v LA A
Z,D 2D +25 B |-> RB

%D 2D

%D 2D +15 \catB \cathA N
B« |

%D LA A <~

%D LA B -> ARB -> B RB
";,D B RB |—>

%D LA RB harrownodes nil 20 nil <->

%D \catB \catA <- sl~ .plabel= a L B=—=

%D - \catB \catA -> sl_ .plabel= b R R

%D

%D enddiagram

%D
$$\diag{adj}$$

Dednat4.lua’s language for diagrams (3)
(See my “Bootstrapping a Forth in 40 lines of Lua code”
in the Lua Gems book... section ‘Modes”)

D di dj .
D e | 100 425 The words in red
D 2D 100 LA <-| A « 5
D 2D | | eat text”.
5% v 4
v v
R o e 2D and 2Dx eat
D 5D +15 \catB \cat the rest of the line
D 2D .
DCLaa <l as a grid, and define
-> ->
D B RB |-> 1 1
BB ereimoces w1 20 00 > nodes with coordinates.
i tA <- ~ .plabel= L 1
D \catB \cath —> s1_ .plabel- b R .plabel modifies the
D\ anadsagran arrow at the top of the
D
$\diag{adj}$$ stack: ‘placement’ ‘label’

10

Dednat4.lua’s language for diagrams (4)
(See my “Bootstrapping a Forth in 40 lines of Lua code”
in the Lua Gems book... section ‘Modes”)

D di dj

D obce 100 425 2D and 2Dx eat

D 2D 100 LA <-| A .

D 2D | | the rest of the line

2 1] .
v v

D oo > as a grid, and define

DA i \eD \amiah nodes with coordinates.

D 2D

DCLas <l Arrow words connect the two
-> ->

D B RB |-> 1

R topmost nodes in the stack.

t! tA <- -, =

D \eath \cath > 51 bTabel- b R harrownodes creates two

D anddisgran phantom nodes for a middle

D .

$\diag{adj}$$ horizontal arrow.

Dednat4.lua’s language for diagrams (5)

For the sake of completeness... diagram resets several tables,
enddiagram outputs the table arrows as diagxy code,

s1” and sl_ slide the topmost arrow in the stack,

The))’in a ((...)) block drops all top items from the
stack until the depth becomes what it was at the ‘((,

we can put Lua code in ‘/L’ lines between ‘/D’ lines, and...

require "diagforth"

storenode {TeX="a", tag=
storenode {TeX="b", tag=
= nodes

~i90; 0% < this Lua code

. smapemti e, SNOWS how the

storearrow(DxyArrow {fro:

b

slide: label="up"

place 1) IOW—leVel
storearrow(DxyArrow {from= to="b", shape=".>"})
storearrow(DxyPlace {nodes["a"]}) s
storearrow(DxyLiteral {"literal foobar"}) functions
= arrous
e i R) work...

print (arrows [2] :TeX ()
print (arrows[3] :TeX ()
print (arrows [4] :TeX ()
print (arrows_to_TeX())

11

12

Dednat6: a semi-preprocessor
Dednat4 is a real pre-processor —

it generates a foo.auto.dnt from foo.tex,
and it runs before KTEX.

In Dednat6 the Lua code that processes the

lines with heads like ‘%L’, “%:’, ‘%D’ etc,

pretends to run at the same time as TEX...

In fact there are synchronization points.

Each tree in a %:’ block generates a ‘\defded’

each diagram in a ‘/D’ block generates a ‘\defdiag’..
‘\pu’ means “process all pending heads until the
current line”; and send the defs to BTEX—

Dednat6: a semi-preprocessor (2)

‘\pu’ means “process all pending heads until the
current line”; and send the defs to BTEX—

This is implemented using “blocks” with i and j fields
for their starting and ending lines.

diagram triangle
2ngr 100 g+20
0 A -->B

| .
2 78 ‘%D’ block: lines 1-10
2D . .
picaemeeo>nc> Rirgt ‘\pu’: line 12

D enddiagram

$6\pu \diagltriangle}ss ‘%:” block: lines 15-22
Second ‘\pu’: line 24

Whole .tex file: lines 1-24

$$\pu \ded{a-tree}$$

13

Dednat6: a semi-preprocessor (3)

‘\pu’ means “process all pending heads until the
current line”; and send the defs to BTEX—

This is implemented using “blocks” with i and j fields
for their starting and ending lines.

b SR g tf = Block {i=1, j=24, nline=1, ...}
Do AT First ‘\pu’; line 12
processuntil(12)
processlines(1, 11)

%D 2D v v
/D 2D +20 c

4D ((AB->BC->AC->

n processblock {head="/D", i=1, j=10}
%D enddiagram output ("\\defdiag{triangle}{...}")
$$\pu \diag{triangle}$$ nline=13
tf becomes {i=1, j=24, nline=13, ...}
A A->B
7777777 Second ‘\pu’: line 24
EN © processuntil(24)
B/\C processlines(13, 23)
e processblock {head="7:", i=15, j=22}

5 output ("\\defded{a-tree}{...}")
$$\pu \ded{a-tree}$$ nline=25

14

15

Dednat6: a semi-preprocessor (4)

%D diagram triangle

%D 2Dx 100 +20
%D 2D 100 A --> B
%D 2D AN
%D 2D v v
%D 2D +20 C
%D 2D

/D ((AB->BC->AC->
%D enddiagram

$$\pu \diag{triangle}$$

% A A->B

% B @
% B/\C

e

h “a-tree

$$\pu \ded{a-tree}$$

tf = Block {i=1, j=24, nline=1, ...}
First ‘\pu’: line 12

processuntil(12)

processlines(1, 11)

processblock {head="yD", i=1, j=10}
output ("\\defdiag{triangle}{...}")
nline=13

tf becomes {i=1, j=24, nline=13, ...}

Second ‘\pu’: line 24

processuntil(24)

processlines(13, 23)

processblock {head="7:", i=15, j=22}
output ("\\defded{a-tree}{...}")
nline=25

16

Downloading and testing

I gave up (temporarily?) keeping a package or a git repo
of Dednat6... but if you run something like this in a shell,
rm -rfv /tmp/edrx-latex/

mkdir /tmp/edrx-latex/

cd /tmp/edrx-latex/

See: http://angg.twu.net/LATEX/2017planar-has-1.pdf

wget http://angg.twu.net/LATEX/2017planar-has-1.tgz

tar -xvzf 2017planar-has-1.tgz

lualatex 2017planar-has-1.tex

you download and unpack a .tgz with the full source code
for 2017planar-has-1.pdf, including a full version of
Dednat6, and all the (non-standard) TEX files...

The home page of dednat6
http://angg.twu.net/dednat6.html

points to several such .tgzs, both simple and complex.

http://angg.twu.net/dednat6.html

Extensions

It is easy to extend Dednat6 with new heads...
For example, for these slides I created a head ‘/,V’
for a Dednat6-based verbatim mode...

the Lua code was initially just this:

registerhead "%V" {
name = "myverbatim",
action = function ()
local i,j,verbatimlinesorig = tf:getblock()
verbatimlines = verbatimlinesorig
end,

Dednat6 would take each block of ‘%V’ lines and

store its contents in the global variable verbatimlines,
that I would process in Lua in ‘L’ lines to generate
the XTEX code that I want...

17

18

Hacking

Hacking something usually consists of these stages:

1) “reading”: understanding docs, data structures, code
2) making tests, dumping data structures

3) “writing”: implementing new things

Here’s how to do (1):

Learn a tiny bit of Emacs and eev:
http://angg.twu.net/#eev

and run the “eepitch blocks” in the Lua source files...

http://angg.twu.net/#eev

Eepitch blocks in comments in Lua files

This is a comment block in dednat6/diagforth.lua:

——[==[

+ (eepitch-luabi)

* (eepitch-kill)

* (eepitch-luab1)

require "diagforth"

storenode {TeX="a", tag="a", x=100, y=100}
storenode {TeX="b", tag="b", x=140, y=100}
= nodes

storearrow(DxyArrow {from="a", to="b", shape="|->",
Lide="6pt", label="up",

placement &

storearrow(DxyArrow {from="a", to="b", shape=".>"})

storearrow(DxyPlace {nodes[" "1

storearrow(DxyLiteral {"literal foobar"})

= arrows

-
It is an “e-script” — an executable log of an experiment
that I was doing. It can be “played back” by typing
‘F8s in Emacs+eev — an ‘F8 on a red star line runs
that line as Lisp code (— set up a target buffer)...

19

Eepitch blocks in comments in Lua files (2)
——[f=[

* (eepitch-luabl)

* (eepitch-kill)

* (eepitch-lua51)

require "diagforth"

storenode {TeX="a", tag="a", x=100, y=100}
storenode {TeX="b", tag="b", x=140, y=100}

= nodes

...
__] ==
An ‘F8 on a red star line runs that line as Lisp code
(— set up a target buffer with a Lua interpreter)
and an ‘F8 on a non-red star line sends that line to
the target buffer as if the user had typed it...

20

21

REPLs
Here’s a screenshot.

2 5,1,
require

", x=100, y=100}
storenode {Tel L x40, w100}

Left Emacs window: the e-script buffer. The cursor is there: l
We have just executed an eepitch block with ‘F8’s.

Right Emacs window: the target buffer, with a terminal

running Lua 5.1 in interactive (Read/Eval/Print/Loop) mode.
Blue ‘>’s: Lua prompts. Bold white: user input (sent with ‘F8’s).

Here we used just Lua, not Lual4ATEX.

REPLs (2)
It is also possible to run Rob Hoelz’s lua-repl
from inside LualATEX. Here’s a screenshot.

%, box[0], 1ist, id, node, id("glyph™}}

x.hox[0]. list.char, string.byte("a"}}

(tex,box[0], 1ist next)

x.hax[0]. list.next.char, string.byte("h"))

xshell=

When you are a Bear of Very Little Brain —
like me — LuaTgX’s interface to TEX boxes
looks very hard... lua-repl may help.

22

23

HEY!!!

From http://angg.twu.net/dednat6.html:

I’ve stopped trying to document dednat6 because

1) I don’t have a mental image of who I am writing for,

2) I get far too little feedback,

3) all of the feedback that I got came from people who felt
that I was not writing for them — my approach, tone and
choice of pre-requisites were all wrong.

If you would like to try dednat6, get in touch, let’s chat —
please!

Maybe I can typeset in 20 minutes a diagram that took you
a day, maybe I can implement an extension that you need...

http://angg.twu.net/dednat6.html

