Visualizing Geometric Morphisms

An application of the "Logic for Children" project to Category Theory

(talk @ "Logic and Categories" workshop, UniLog 2018)

5 5

By:

Eduardo Ochs (UFF, Brazil)

Selana Ochs

Logic / categories / toposes for children

(Very short version; for the long version see the resources for the "Logic for Children" workshop)

Many years ago...

Non-Standard Analysis

- → Johnstone's "Topos Theory"
- \rightarrow FAR too abstract for me
- → I NEED A VERSION FOR CHILDREN OF THIS

For Children: using "internal views" and examples with finite objects that are easy to draw Heyting Algebras that are subset of \mathbb{Z}^2 (paper) Presheaves that can be drawn on a subset of \mathbb{Z}^2 (new)

Planar Heyting Algebras for Children

(\phi paper submitted in 2017 — http://angg.twu.net/math-b.html)

Main definition:

A ZHA is a finite subset of \mathbb{Z}^2 made of all even points (x+y=2k) between (0,0) and \top between a "left" and a "right wall". (The "Z" in ZHA means " $\subset \mathbb{Z}^2$ ")

Main theorems:

every ZHA is a Heyting Algebra every ZHA is a topology in disguise

Planar Heyting Algebras for Children

(† Very good paper! No prerequisites! Lots of fun! Go read it!)

Most toposes have more than two truth-values and an intuitionistic logic.

The paper PHAfC shows how to visualize this (on ZHAs). It uses LR-coordinates and shows how the '→' on ZHAs can be calculated quickly using a formula with four cases.

Planar Heyting Algebras for Children 2: Local Operators

The second paper in the series.

Sheaves correspond to local operators on HAs.

A local operator on a ZHA corresponds to slashing the ZHA by diagonal cuts and blurring the distinction between the truth-values in each region.

PHAfC doesn't mention categories. PHAfC2 doesn't mention categories yet.

ZCategories

Choose a finite subset of \mathbb{Z}^2 . (Optional step: rename its points.) Use this set as the set of objects of a category.

Add a finite set of arrows. This is a ZCategory. The \mathbb{Z}^2 -coordinates tell

how to draw it.

ZPresheaves and ZToposes

A ZPresheaf is a functor $F : \mathbf{A} \to \mathbf{Set}$, where **A** is a ZCategory.

(Obs: not $F: \mathbf{A}^{op} \to \mathbf{Set}!$)

A ZPresheaf F inherits its drawing instructions from \mathbf{A} . ("Positional notations")

$$\mathbf{A} = egin{pmatrix} 1 & & & & & \\ 2 & \Rightarrow 3 & & & & \\ \downarrow & \downarrow & & \downarrow & & \\ 4 & \Rightarrow 5 & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

A ZTopos is a category $\mathbf{Set}^{\mathbf{A}}$ where \mathbf{A} is a ZCategory.

(Part 1: functions)

The internal view of the function $\mathcal{N}: \mathbb{N} \to \mathbb{R}$ is:

(' \mapsto 's take elements of a blob-set to another blob-set)

(Part 2: functors)

Internal views of functors have blob-categories instead of blob-sets. Compare:

(Part 3: omitting the blobs)

(Part 4: adjunctions)

Left: generic adjunction $L \dashv R$

Middle: generic geometric morphism $f^* \dashv f_*$ Right: g.m. between toposes $\mathbf{Set}^{\mathbf{A}}$ and $\mathbf{Set}^{\mathbf{B}}$

Working in two languages in parallel

Ideas: do things "for children" and "for adults" in parallel, find ways to *transfer knowledge* between the two approaches...

$$\left(\begin{array}{c} \text{particular} \\ \text{case} \\ \text{"for children"} \end{array} \right) \xrightarrow[\text{generalize} \\ \underbrace{\overset{(\text{easy})}{=}}_{\text{generalize}} \left(\begin{array}{c} \text{general} \\ \text{case} \\ \text{"for adults"} \end{array} \right)$$

The diagrams for the general case and for a particular case have the same shape!!!

Working in two universes in parallel

In Non-Standard Analysis we have transfer theorems

$$\left(\begin{array}{c} \text{Standard} \\ \text{universe} \end{array}\right) \xrightarrow{\hspace*{0.5cm}} \left(\begin{array}{c} \text{Non-Standard} \\ \text{universe} \\ \text{(ultrapower)} \end{array}\right)$$

Our first geometric morphism

$$\begin{pmatrix}
F_{2} & F_{3} & F_{5} \\
F_{4} & F_{5}
\end{pmatrix} \longrightarrow \begin{pmatrix}
F_{2} & F_{5} & F_{5} \\
F_{4} & F_{5}
\end{pmatrix}$$

$$\begin{pmatrix}
G_{2} & G_{3} & G_{5} \\
G_{4} & G_{5}
\end{pmatrix} \longrightarrow \begin{pmatrix}
G_{2} & G_{3} & G_{5} \\
G_{2} & G_{3} & G_{5}
\end{pmatrix}$$

$$\begin{pmatrix}
G_{2} & G_{3} & G_{5} \\
G_{4} & G_{5}
\end{pmatrix} \longrightarrow \begin{pmatrix}
F & F & F \\
G_{2} & G_{3} & G_{5}
\end{pmatrix}$$

$$\begin{pmatrix}
G_{2} & G_{3} & G_{5} \\
G_{4} & G_{5}
\end{pmatrix} \longrightarrow \begin{pmatrix}
F & F & F \\
F & F &$$

A factorization

Elephant = Bible

Section A4: Geometric Morphisms

Each ' \longrightarrow ' below is a g.m. (an adjunction)

Any g.m. factors as a surjection followed by an inclusion.

Any inclusion factors as a dense g.m.

followed by a closed g.m..

$$\begin{array}{c} \mathcal{A} \xrightarrow{\text{any}} & \mathcal{D} \\ \mathcal{A} \xrightarrow{\text{surjection}} \mathcal{B} \xrightarrow{\text{inclusion}} & \mathcal{D} \\ & \mathcal{B} \xrightarrow{\text{dense}} & \mathcal{C} \xrightarrow{\text{close}} & \mathcal{D} \end{array}$$

The Elephant constructs the toposes \mathcal{B} , \mathcal{C} and the maps.

A factorization: version using ZPresheaves

This would be a nicer theorem — that if we start with ZToposes $\mathbf{Set}^{\mathbf{A}}$ and $\mathbf{Set}^{\mathbf{D}}$ the factorization can be through ZToposes...

That factorization, for children

We start with a particular case, with a factorization that only has ZToposes, and we use it to understand how the Elephant defines sujection, inclusion, etc... (s is not an inclusion, i is not a surjection, and so on)

The surjection-inclusion factorization for children

The dense-closed factorization for children

 $(K \text{ is a constant ZPresheaf in } \mathbf{Set}^{\mathbf{C}})$

According to the Elephant...

A4.2.7, 4.2.10: to build \mathcal{B} we need comonads and coalgebras

A4.5.9, A4.5.20: $C = \mathsf{sh}_{\neg\neg}(\mathbf{Set}^{\mathbf{D}})$ (can't be!)

Another strategy

Start with a functor $g: \mathbf{A} \to \mathbf{D}$.

It induces a geometric morphism $g^* \dashv g_*$.

 g^* is trivial to build.

 g_* can be found by guess-and-test.

(or by Kan extensions)

The functor g can:

collapse objects, $(1 \ 2) \rightarrow (1)$

create objects, () \rightarrow (3)

collapse arrows, $(4 \Longrightarrow 5) \rightarrow (4 \rightarrow 5)$

create arrows, $(6 \ 7) \rightarrow (6 \rightarrow 7)$

Try to factor it. Example: if g just collapses objects...

Another strategy

```
The functor g can do several things:
collapse objects, (1 \ 2) \rightarrow (1)
create objects, () \rightarrow (3)
collapse arrows, (4 \Longrightarrow 5) \rightarrow (4 \rightarrow 5)
create arrows, (6 \ 7) \rightarrow (6 \rightarrow 7)
refine the order, (2 \rightarrow 4) \rightarrow (1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5)...
```

Try to factor it.

Example: if g just collapses objects, then it factor as s = g (surj. part), i = id (inclusion part)... The factorization filters the *things* that the functor can do, collapsing objects go to the surjective part.

Another strategy

Choose a functor $f: \mathbf{A} \to \mathbf{B}$ that does all things. Factorize it. \mathcal{B} and \mathcal{C} will be non-trivial. They tell us how \mathcal{B} and \mathcal{C} will be modulo

isomorphism.

For more information:

http://angg.twu.net/logic-for-children-2018.html http://angg.twu.net/math-b.html