|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2019J-ops-valuations.tex")
% See: (find-LATEX "2020J-ops-new.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2019J-ops-valuations.tex" :end))
% (defun d () (interactive) (find-pdf-page "~/LATEX/2019J-ops-valuations.pdf"))
% (defun e () (interactive) (find-LATEX "2019J-ops-valuations.tex"))
% (defun u () (interactive) (find-latex-upload-links "2019J-ops-valuations"))
% (find-pdf-page "~/LATEX/2019J-ops-valuations.pdf")
% (find-sh0 "cp -v ~/LATEX/2019J-ops-valuations.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2019J-ops-valuations.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2019J-ops-valuations.pdf
% file:///tmp/2019J-ops-valuations.pdf
% file:///tmp/pen/2019J-ops-valuations.pdf
% http://angg.twu.net/LATEX/2019J-ops-valuations.pdf
% (find-LATEX "2019.mk")
% «.valuations» (to "valuations")
\directlua{tf_push("2019J-ops-valuations.tex")}
% __ __ _ _ _
% \ \ / /_ _| |_ _ __ _| |_(_) ___ _ __ ___
% \ \ / / _` | | | | |/ _` | __| |/ _ \| '_ \/ __|
% \ V / (_| | | |_| | (_| | |_| | (_) | | | \__ \
% \_/ \__,_|_|\__,_|\__,_|\__|_|\___/|_| |_|___/
%
% «valuations» (to ".valuations")
% (jonp 16 "valuations")
% (jov "valuations")
% (p2lp 7 "valuations")
% (p2l "valuations")
\section{Valuations}
\label {valuations}
Let $H_\odot$ and $J_\odot$ be a ZHA and a J-operator on it, and let
$v_\odot$ be a function from the set $\{P,Q\}$ to $H$. By an abuse of
language $v_\odot$ will also denote the triple $(H_\odot, J_\odot,
v_\odot)$ --- and by a second abuse of language $v_\odot$ will also
denote the obvious extension of $v_\odot: \{P,Q\}→H$ to the set of all
valid expressions formed from $P$, $Q$, $·^*$, $⊤$, $⊥$, and the
connectives.
Let $i,j∈\{0,\ldots,7\}$. Then $(\oand_i,\oand_j)∈\SCube^*_\land$
means that $\oand_i ≤ \oand_j$ is a theorem, and so $v_\odot(\oand_i)
≤ v_\odot(\oand_j)$ holds; i.e.,
%
$$\SCube^*_\land
⊆ \setofst {(\oand_i,\oand_j)}
{i,j∈\{0,\ldots,7\}, \; v_\odot(\oand_i) ≤ v_\odot(\oand_j)}
$$
%
and the same for:
%
$$\begin{array}{c}
\SCube^*_\lor
⊆ \setofst {(\oor_i,\oor_j)}
{i,j∈\{0,\ldots,7\}, \; v_\odot(\oor_i) ≤ v_\odot(\oor_j)}
\\
\SCube^*_\to
⊆ \setofst {(\oimp_i,\oimp_j)}
{i,j∈\{0,\ldots,7\}, \; v_\odot(\oimp_i) ≤ v_\odot(\oimp_j)}
\\
\end{array}
$$
Some valuations that turn these `$⊆$'s into `$=$'. Let
%
%L mp = mpnew({def="orCube", scale="11pt"}, "12321L"):addcuts("c 21/0 0|12")
%L mp:put(v"10", "P"):put(v"20", "P*", "P^*")
%L mp:put(v"01", "Q"):put(v"02", "Q*", "Q^*")
%L mp:output()
%
%L mp = mpnew({def="andCube", scale="11pt"}, "12321"):addcuts("c 2/10 01|2")
%L mp:put(v"20", "P"):put(v"21", "P*", "P^*")
%L mp:put(v"02", "Q"):put(v"12", "Q*", "Q^*")
%L mp:output()
%
%L mp = mpnew({def="impCube", scale="11pt"}, "12R1L"):addcuts("c 2/10 01|2")
%L mp:put(v"10", "P") -- :put(v"20", "P*", "P^*")
%L mp:put(v"01", "Q") -- :put(v"02", "Q*", "Q^*")
%L mp:output()
%
\pu
%
$$\begin{array}{c}
(H_∧, J_∧, v_∧) = \andCube
\qquad
(H_∨, J_∨, v_∨) = \orCube \\
(H_→, J_→, v_→) = \impCube \\
\end{array}
$$
%
then
%
$$\begin{array}{c}
\SCube^*_\land
= \setofst {(\oand_i,\oand_j)}
{i,j∈\{0,\ldots,7\}, \; v_∧(\oand_i) ≤ v_∧(\oand_j)}
\\
\SCube^*_\lor
= \setofst {(\oor_i,\oor_j)}
{i,j∈\{0,\ldots,7\}, \; v_∨(\oor_i) ≤ v_∨(\oor_j)}
\\
\SCube^*_\to
= \setofst {(\oimp_i,\oimp_j)}
{i,j∈\{0,\ldots,7\}, \; v_→(\oimp_i) ≤ v_→(\oimp_j)}
\\
\end{array}
$$
%
or, in more elementary terms:
\newpage
{\sl A very important fact.}
For any $i$ and $j$,
%
$$\pu
\begin{array}{rcl}
\oand_i≤\oand_j & \text{ is a theorem iff it is true in } & \andCube \;\; , \\
\\
\oor_i≤\oor_j & \text{ is a theorem iff it is true in } & \orCube \;\; , \\
\\
\oimp_i≤\oimp_j & \text{ is a theorem iff it is true in } & \impCube \;\; . \\
\end{array}
$$
The very important fact, and the valuations $v_∧$, $v_∨$, $v_→$, give
us:
\begin{itemize}
\item a way to {\sl remember} which sentences of the forms
$\oand_i≤\oand_j$, $\oor_i≤\oor_j$, $\oimp_i≤\oimp_j$ are theorems;
\item countermodels for all the sentences of these forms not in
$\SCube_∧$, $\SCube_∨$, $\SCube_→$. For example, $\oor_7≤\oor_4$ is
not in $\SCube_∨$; and $v_∨(\oor_7)≤v_∨(\oor_4)$, which shows that
$\oor_7≤\oor_4$ can't be a theorem.
\end{itemize}
% (find-books "__cats/__cats.el" "bell")
% (find-books "__cats/__cats.el" "bell" "163")
{\sl An observation.} I arrived at the cubes $\ECube_∧^*$,
$\ECube_∨^*$, $\ECube_→^*$ by taking the material in the corollary 5.3
of chapter 5 in \cite{BellLST} and trying to make it fit into less
mental space (as discussed in \cite{OchsIDARCT}); after that I wanted
to be sure that each arrow that is not in the extended cubes has a
countermodel, and I found the countermodels one by one; then I
wondered if I could find a single countermodel for all non-theorems in
$\ECube_∧^*$ (and the same for $\ECube_∨^*$ and $\ECube_→^*$), and I
tried to start with a valuation that distinguished {\sl some}
equivalence classes in $\ECube_∧^*$, and change it bit by bit, getting
valuations that distinguished more equivalence classes at every step.
Eventually I arrived at $v_∧$, $v_∨$ and at $v_→$, and at the ---
surprisingly nice --- ``very important fact'' above.
% (ph2p 20 "ZHA-vals-good")
% (ph2 "ZHA-vals-good")
Note that this valuation
%
%L mp = mpnew({def="orand", scale="11pt"}, "1234321L"):addcuts("c 432/10 01|23")
%L mp:put(v"20", "P"):put(v"31", "P*", "P^*")
%L mp:put(v"02", "Q"):put(v"13", "Q*", "Q^*")
%L mp:output()
%
$$(H_{∧∨},J_{∧∨},v_{∧∨}) \;\; = \;\; \pu\orand$$
%
distinguishes all equivalence classes in $\ECube^*_∧$ and in
$\ECube^*_∨$, but not in $\ECube^*_→$... it ``thinks'' that $P→Q$ and
$P^*→Q$ are equal.
\directlua{tf_pop()}
% Local Variables:
% coding: utf-8-unix
% ee-tla: "jov"
% End: