|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2019newton-abs.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2019newton-abs.tex" :end))
% (defun d () (interactive) (find-pdf-page "~/LATEX/2019newton-abs.pdf"))
% (defun b () (interactive) (find-zsh "bibtex 2019newton-abs; makeindex 2019newton-abs"))
% (defun e () (interactive) (find-LATEX "2019newton-abs.tex"))
% (defun u () (interactive) (find-latex-upload-links "2019newton-abs"))
% (find-xpdfpage "~/LATEX/2019newton-abs.pdf")
% (find-sh0 "cp -v ~/LATEX/2019newton-abs.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2019newton-abs.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2019newton-abs.pdf
% file:///tmp/2019newton-abs.pdf
% file:///tmp/pen/2019newton-abs.pdf
% http://angg.twu.net/LATEX/2019newton-abs.pdf
%
% (find-TH "math-b" "2019-newton")
\documentclass[oneside]{book}
\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-LATEX "edrx15.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\begin{document}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua")
% %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua")
% \pu
% https://mail.google.com/mail/ca/u/0/#search/newton/FMfcgxwDqTdRFhhfJQTMmgLMCnPcMgbZ
% Voce teria interesse/possibilidade em participar deste evento,
% supondo o workshop ocorrendo entre os dias 11 e 12 de dezembro?
% https://mail.google.com/mail/ca/u/0/#search/hugo/FMfcgxwDqxPSnNjjTBHLclRFzDwgQbkC
% Tenho até dia 15 pra mandar o abstract
% Mandei:
% https://mail.google.com/mail/ca/u/0/#inbox/FMfcgxwDqxPSnNjjTBHLclRFzDwgQbkC
{\bf On two tricks to make Category Theory fit in less mental space:
missing diagrams and skeletons of proofs}
\medskip
When I started studying Category Theory two things in the texts gave
me the impression that CT was incredibly powerful: one was the
suggestion, implicit in the use of the definite article ``the'' in
expressions like ``{\sl the} functor that takes each object $B$ to $A
{\times} B$'', that once we define how a functor acts on objects its
action on morphisms is ``obvious'' in some sense; the other one is the
idea that almost all reasoning in CT is diagrammatical, and that as
soon as we are past the beginner stage the diagrams become ``obvious''
too: they are omitted from the books and articles for reasons of
space, but drawing the ``missing diagrams'' is something that is
almost automatic.
In this talk I will present some techniques for drawing the ``missing
diagrams'' in a more or less canonical way, and for starting from a
``skeleton'' of a categorical concept or proof and reconstructing the
rest from that.
% (find-books "__cats/__cats.el" "landry")
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-tla: "nea"
% End: