
1

An introduction to Type Theory
and to Pure Type Systems

and to the “Logic for Children” project
Eduardo Ochs (UFF, Brazil)

http://angg.twu.net/math-b.html#intro-tys-lfc

2019notes-types April 20, 2019 03:51

http://angg.twu.net/math-b.html#intro-tys-lfc

2

These slides are divided into...

Part 1: Discrete Mathematics
How I teach DM to our first-semester CompSci students.

Part 2: Logics, λ-Calculus and Translations
A course that some students attend on the second semester.
It introduces the simply-typed λ-calculus, Curry-Howard,
Planar Heyting Algebras, Intuitionistic Propositional Logic,
Cartesian Closed Categories, the adjunction (×B) a (B →),
and two functional languages: Lisp and Lua.

Part 3: Dependent types and Pure Type Systems

3

Eagle-eye view
In this set of slides we will learn how to interpret
“judgments” and “pre-judgments” like these:
1) a:{1, 2}, b:{2, 3}, a < b ` (10a+ b):N
2) a:{1, 2}, b:{2, 3} ` a < b ⇐ a false proposition!
3) A:Θ, B:Θ ` A:Θ
4) A:Θ, B:Θ ` A×B:Θ
5) A:Θ, B:Θ, a:A, f :A → B ` fa:B
6) A:Θ, B:Θ, a:A, b:B ` (a, b):A×B
7) A:Θ, B:Θ, a:A ` (λb:B.(a, b)):B → A×B

in several type systems — some of them concrete but informal,
some formal but very abstract...
A non-standard notion — “informally valid” —
will help us understand which judgments are derivable.

4

Eagle-eye view (2)
We will see:

• The simply-typed λ-calculus (“λ1”) as a PTS
• Pure Type Systems in which we can represent:
• Functors
• Natural transformations
• Truth-values, propositions, proofs

This is a preparation for:
• Interpreting categorical diagrams precisely
• Raising the status of CT diagrams from second-

class to first-class citizens
• Formalizing the “Logic for Children” project

5

Motivation (for types)
The usual sales talk for type systems is:
Type systems are at the base of languages like Coq,
that can be used to formalize a lot of mathematics,
and in some cases they can fill up some details of the proofs
themselves, automatically. Proof assistants have lots
of uses in academia and in industry, which means
jobs and grants...

But Coq is hard to learn =(, so:

Alternative motivation, for people with little free time:
Many programming languages use types and lambdas,
even if in a primitive form; if we use types our objects
become Lego-ish pieces that only match in a few ways...

6

Motivation (for types) (2)
At one point, when I was an undergrad, I took a course on
Advanced Calculus that had a bit of Calculus of Variations...
The characterization of “curves with minimal energy” only
made sense to me when I discovered that I could draw it as:

s // // I//

x

y __???????????
x

jOOj L//

x

L??�����������

I just had to name the types — and once I did that
there was a single way to make the objects match and
fit together! The construction became natural.

7

Motivation (for types) (3)
We will use Hindley/Seldin (2008):
“Lambda-Calculus and Combinators, an Introduction”.
It presents several simple λ-calculi and type systems,
but looks too abstract at first... we will see a way to
understand some of its notations.

This book about Type Theory is mind-blowing and lots of
fun: Kamareddine/Laan/Nederpelt (2004):
“A Modern Perspective on Type Theory —
From its origins until today”

We will use a book chapter by Thorsten Altenkirch, called
“Naïve Type Theory”, to complement the KLN book.
(http://www.cs.nott.ac.uk/~psztxa/publ/fomus19.pdf)

http://www.cs.nott.ac.uk/~psztxa/publ/fomus19.pdf

Part 1
Discrete Mathematics

(At PURO/UFF)

9

(Let’s start with) Discrete Mathematics
I teach in a city called Rio das Ostras, in the countryside of
the state of Rio de Janeiro, in a big federal university (“UFF”),
but in one of its smallest campi, away from the capital.
I sometimes teach Discrete Mathematics to Computer Science
students there.

Many of the students there — even in CompSci — enter the
university with very little knowledge of:
1) how to deal with variables,
2) how to write their calculations,
3) how to test their ideas.

Discrete Mathematics is a first-semester course there.
Let me explain my approach to fix (1), (2), and (3).

10

Pólo Universitário de Rio das Ostras (PURO)

⇐

The entrance of the
campus looks like this.
It feels like a nowhere.
I need to interact more
via the internets!!!

11

Discrete Mathematics at PURO/UFF
I structured the Discrete Mathematics (“DM”) course
in three layers.

Layer 1 consists of calculating things and learning
how to use mathematical notation and definitions.
Layer 2 introduces some infinite objects, like N and Z.
Layer 3 introduces a formal language for doing proofs.

Everything in Layer 1 can be calculated in a finite
number of steps with very little creativity.

One of the basic things that we learn in Layer 1 is
set comprehensions — that (ta-daaa! Magic!!!!!!)
are the base for λ-calculus and Type Theory.

12

Basic Mathematical Objects
Here’s a definition (“for adults”) of the
mathematical objects that we deal with
in Level 1. Notation: O is the set of BMOs.

a) Numbers belong to O; Z ⊂ O.
b) The truth-values belong to O: {T,F} ⊂ O.
c) O is closed by “finite lists” and “finite sets”.
d) Finite strings belong to O.

Item (d) is only introduced at the end of the course,
when we show that “valid expressions” can be defined
formally... “1+2*(3+4)” is “valid”, but “)+)” is not.

Some graphical representations are allowed.

13

Some graphical representations
We define graphical representations for:
a) (finite) subsets of Z2,
b) functions whose domains are (a),
c) directed graphs...

K =

{
(1,3),

(0,2), (2,2),
(1,1),
(1,0)

}
= =

f =

{
((1,3),1),

((0,2),0), ((2,2),2),
((1,1),1),
((1,0),1)

}
=

1
0 2
1
1

(V,A) =

(
{1, 2, 3, 4, 5},

{
(1,2),(1,3),
(2,4),(3,4),

(4,5)

})
=

1

2
����
1

3
��?

?

2

4
��?

? 3

4
����

4

5
��

14

Layer 1: Set Comprehensions
One of the first things that I present to students is
a syntax for set comprehensions using “generators”,
“filters” and a “result expression”...

{a ∈ {1, 2}︸ ︷︷ ︸
gen

, b ∈ {2, 3}︸ ︷︷ ︸
gen

, a < b︸ ︷︷ ︸
filt︸ ︷︷ ︸

context

; (a, b)︸ ︷︷ ︸
expr

} = {(1, 2), (1, 3), (2, 3)}

=

Note the ‘;’ instead of a ‘|’!
These things can be calculated from left to right
using trees in a finite number of steps.

15

Layer 1: Set Comprehensions (2)
I make the students work in groups, and they solve
the 5 + 19 + 16 + 9 + 16 + 7 exercises quickly.
I suggest this table-ish way to draw the trees...
To calculate
{ a ∈ {1, 2}, b ∈ {2, 3}, a < b ; 10a+ b } = {12, 13, 23}
we draw:
a b a < b 10a+ b
1 2 T 12
1 3 T 13
2 2 F
2 3 T 23

the vertical bar means “abort”.
Valid values for the context: (1, 2,T), (1, 3,T), (2, 3,T).

16

Layer 1: Set Comprehensions — SPOILER
Spoiler: the idea of context will be reused in many other
contexts later, but with slightly different notations...
Compare:

1) { a ∈ {1, 2}, b ∈ {2, 3}, a < b ; 10a+ b } = {12, 13, 23}
2) a:{1, 2}, b:{2, 3}, a < b ` (10a+ b):N
3) a:{1, 2}, b:{2, 3} ` a < b ⇐ this is false!
4) A:Sets, B:Sets ` A:Sets
5) A:Sets, B:Sets ` A×B:Sets
6) A:Sets, B:Sets, a:A, f :A → B ` f(a):B
7) A:Sets, B:Sets, a:A, b:B ` (a, b):A×B
8) A:Sets, B:Sets, a:A ` (λb:B.(a, b)):B → A×B

17

An abuse of language
Remember that I make the students
do 5+19+16+9+16+7 exercises about set comprehensions...
some of the exercises are about cartesian products, and
some introduce new notations, like:
{x ∈ {2, 3, 4}, y ∈ {2, 3, 4}, y = 3; (x, y)}
{x, y ∈ {2, 3, 4}, y = 3; (x, y)}
{(x, y) ∈ {2, 3, 4}2, y = 3; (x, y)}
This abuse of language will be incredibly important later
when we discuss type systems. We will allow things like:
A:Sets, B:Sets, (a, b):A×B, f :A → B ` fa:B

How do we make (a, b) behave as a variable?
(In the singular!)

18

An abuse of language (2)
Short answer:
(a, b) becomes a “long name” for a variable p,
a becomes an abbreviation for π(a, b), i.e., πp,
b becomes an abbreviation for π′(a, b), i.e., π′p,

A:Sets, B:Sets, (a, b):A×B, f :A → B ` f(a):B
becomes:
A:Sets, B:Sets, p:A×B, f :A → B ` f(πp):B

(More on “long names” later!)

19

λ-notation in Discrete Mathematics
In DM we see functions as sets of input-output pairs...
If f : {1, 2, 3} → {10, 20, 30}

x 7→ 10x

then f =

{
(1,10),
(2,20),
(3,30)

}
.

The students learn that, e.g.,{
(1,10),
(2,20),
(3,30)

}
(2) = 20, and

{
(1,10),
(2,20),
(3,30)

}
(4) = ERROR.

We see (in passing) that

(λx ∈ {1, 2, 3}.10x) = {x ∈ {1, 2, 3}; (x, 10x)} =

{
(1,10),
(2,20),
(3,30)

}
.

20

(Simultaneous) substitution
I also teach, right in the beginning of the course,
a notation for (simultaneous) substitution...
(Because I can’t rely on the students’ Portuguese!...)
Examples:

((x+ y) · z)
[
x:=a+y
y:=b+z
z:=c+x

]
= ((a+ y) + (b+ z)) · (c+ x)

(Vanessão 20 reais)
[
a :=

(∫
�
�

)]
= (V

(∫
�
�

)
ness

(̃ ∫
�
�

)
o 20 re

(∫
�
�

)
is)

21

(Simultaneous) substitution (2)
This is useful to test equations,

(x2 − 4 = 0)
[
x := 3

]
= (9− 4 = 0) = F

(x2 − 4 = 0)
[
x := 2

]
= (4− 4 = 0) = T

and to define a way to calculate expressions with quantifiers:

(∀a ∈ {2, 3, 5}.a2 < 10) = (a2 < 10)[a := 2] ∧
(a2 < 10)[a := 3] ∧
(a2 < 10)[a := 5]

= (22 < 10) ∧ (32 < 10) ∧ (42 < 10)
= (4 < 10) ∧ (9 < 10) ∧ (16 < 10)
= T ∧T ∧ F
= F

22

Substitution and λ-calculus
...and I mention, very briefly, that we can use substitution
to calculate with λ-terms:
(λx ∈ {1, 2, 3}.10x)(2) = (10x)[x := 2]

= 10 · 2
= 20

Some students later take an optional seminar course that is
a very basic introduction to λ-calculus and Category Theory...
In it they learn how to handle untyped λ-terms...

Part 2
λ-Calculus, Logics,
and Translations

(At PURO/UFF)
An optional, second-semester-ish,

hands-on seminar course...
(↑ based on exercises)

I used it to test several ideas of the
“Logic for Children” project!...

24

Reductions
What happens if we forget all algebra that we know?
Suppose that we forget everything beyond basic arithmetic.
Now we only know how to add and multiply numbers.
What are the ways to calculate an expression —
2 · 3 + 4 · 5, say — step-by-step until we reach a final result?

2 · 3 + 4 · 5 2 · 3 + 20//2 · 3 + 4 · 5

6 + 4 · 5
��

2 · 3 + 20

6 + 20
��

6 + 4 · 5 6 + 20// 6 + 20 26//

We get a directed graph!

25

Reductions (2)

2 · 3 + 4 · 5 2 · 3 + 20//2 · 3 + 4 · 5

6 + 4 · 5
��

2 · 3 + 20

6 + 20
��

6 + 4 · 5 6 + 20// 6 + 20 26//

The students draw graphs like these for several
initial expressions... each graph can be drawn in
several equivalent ways, and the students learn
to debug their graphs by working together,
comparing their drawings, and trying to find
more elegant shapes...

26

Reduction sequences
The arrows here show the one-step reductions
starting from 2 · 3 + 4 · 5.

2 · 3 + 4 · 5 2 · 3 + 20//2 · 3 + 4 · 5

6 + 4 · 5
��

2 · 3 + 20

6 + 20
��

6 + 4 · 5 6 + 20// 6 + 20 26//

After a bunch of similar exercices the students
get the feeling that all reduction sequences terminate,
and that we have “confluence”.
These properties — “termination” and “confluence” —
are very important, and we want to keep them
as we add more ways to calculate things...

27

Termination and confluence
From Hindley/Seldin (2008)...
P.14:
Note The property described in the Church-Rosser theorem,
that if a term can be reduced to two different terms then these
two terms can be further reduced to one term, is called conflu-
ence. The theorem states that β-reduction is confluent.

P.114:
The above theorem and its corollaries contrast strongly with
untyped λ, in which reductions may be infinitely long and there
is no decision-procedure for the relation =β (Corollary 5.6.3).
They say that the world of typed terms is completely safe, in
the sense that all computations terminate and their results are
unique.

28

Untyped ‘λ’s
Typed ‘λ’s can be calculated using sets.
Untyped ‘λ’s have to be calculated using substituition.

(λx ∈ {1, 2, 3}.10x)(2) =

{
(1,10),
(2,20),
(3,30)

}
(2)

= 20

(λx.10x)(2) = (10x)[x := 2]
= 10 · 2
= 20

29

Reducing functions and ‘λ’s
We add named functions and (untyped) ‘λ’s...
If g(a) = a · a+ 4 and h = λa. a · a+ 4, then:

g(2 + 3) g(5)//

(2 + 3) · (2 + 3) + 4

(2 + 3) · 5 + 4
$$JJ

JJJ
J

(2 + 3) · 5 + 4

5 · 5 + 4
$$JJ

JJJ
J

5 · (2 + 3) + 4 5 · 5 + 4//

g(2 + 3)

(2 + 3) · (2 + 3) + 4
��

(2 + 3) · (2 + 3) + 4

5 · (2 + 3) + 4
��

g(5)

5 · 5 + 4
��

5 · 5 + 4

25 + 4
��

25 + 4

29
��

h(2 + 3) h(5)//

(a · a+ 4)[a := 2 + 3] (a · a+ 4)[a := 5]//

(λa. a · a+ 4)(2 + 3) (λa. a · a+ 4)(5)//

(2 + 3) · (2 + 3) + 4

(2 + 3) · 5 + 4
&&MM

MMM
M

(2 + 3) · 5 + 4

5 · 5 + 4
&&MM

MMM
MM

5 · (2 + 3) + 4 5 · 5 + 4//

h(2 + 3)

(λa. a · a+ 4)(2 + 3)
��

(λa. a · a+ 4)(2 + 3)

(a · a+ 4)[a := 2 + 3]
��

(a · a+ 4)[a := 2 + 3]

(2 + 3) · (2 + 3) + 4
��

(2 + 3) · (2 + 3) + 4

5 · (2 + 3) + 4
��

h(5)

(λa. a · a+ 4)(5)
��

(λa. a · a+ 4)(5)

(a · a+ 4)[a := 5]
��

(a · a+ 4)[a := 5]

5 · 5 + 4
��

5 · 5 + 4

25 + 4
��

25 + 4

29
��

30

g(2 + 3) g(5)//

(2 + 3) · (2 + 3) + 4

(2 + 3) · 5 + 4
$$JJ

JJJ
J

(2 + 3) · 5 + 4

5 · 5 + 4
$$JJ

JJJ
J

5 · (2 + 3) + 4 5 · 5 + 4//

g(2 + 3)

(2 + 3) · (2 + 3) + 4
��

(2 + 3) · (2 + 3) + 4

5 · (2 + 3) + 4
��

g(5)

5 · 5 + 4
��

5 · 5 + 4

25 + 4
��

25 + 4

29
��

h(2 + 3) h(5)//

(a · a+ 4)[a := 2 + 3] (a · a+ 4)[a := 5]//

(λa. a · a+ 4)(2 + 3) (λa. a · a+ 4)(5)//

(2 + 3) · (2 + 3) + 4

(2 + 3) · 5 + 4
&&MM

MMM
M

(2 + 3) · 5 + 4

5 · 5 + 4
&&MM

MMM
MM

5 · (2 + 3) + 4 5 · 5 + 4//

h(2 + 3)

(λa. a · a+ 4)(2 + 3)
��

(λa. a · a+ 4)(2 + 3)

(a · a+ 4)[a := 2 + 3]
��

(a · a+ 4)[a := 2 + 3]

(2 + 3) · (2 + 3) + 4
��

(2 + 3) · (2 + 3) + 4

5 · (2 + 3) + 4
��

h(5)

(λa. a · a+ 4)(5)
��

(λa. a · a+ 4)(5)

(a · a+ 4)[a := 5]
��

(a · a+ 4)[a := 5]

5 · 5 + 4
��

5 · 5 + 4

25 + 4
��

25 + 4

29
��

31

Types
Let’s (re)introduce types, but with another notation (‘:’).
Let:
A = {1, 2}
B = {30, 40}.

If f : A → B, then f is one of four functions...

f ∈
{{

(1,30)
(2,30)

}
,

{
(1,30)
(2,40)

}
,

{
(1,40)
(2,30)

}
,

{
(1,40)
(2,40)

}}
Let’s use the notation “A → B” for
“the set of all functions from A to B”.

Then (A → B) =
{{

(1,30)
(2,30)

}
,

{
(1,30)
(2,40)

}
,

{
(1,40)
(2,30)

}
,

{
(1,40)
(2,40)

}}
and f : A → B
means f ∈ (A → B).

32

Types (2)
In Type Theory and λ-calculus “a : A”
is pronounced “a is of type A”, and the meaning
of this is roughly “a ∈ B”.
(We’ll see the differences between ‘∈’ and ‘:’ (much) later).

Note that:
1) if f : A → B and a : A then f(a) : B
2) if a : A and b : B then (a, b) : A×B
3) if p : A×B then πp : A and π′p : B, where
4) ‘π’ means ‘first projection’ and
5) ‘π′’ means ‘second projection’...

Example:
if p = (2, 30) then πp = 2, π′p = 30.

33

Types (3)
Let:
A = {1, 2},
B = {3, 4},
C = {5, 6}.

If p : A×B and g : B → C, then:

(π p︸︷︷︸
:A×B︸ ︷︷ ︸
:A

, g︸︷︷︸
:B→C

(π′ p︸︷︷︸
:A×B︸ ︷︷ ︸
:B

)

︸ ︷︷ ︸
:C

)

︸ ︷︷ ︸
:A×C

)

...because A, B, and C are known sets!

34

Types (4)
More abstractly now, if A, B, C are known sets,
and p : A×B and g : B → C, then:

(π p︸︷︷︸
:A×B︸ ︷︷ ︸
:A

, g︸︷︷︸
:B→C

(π′ p︸︷︷︸
:A×B︸ ︷︷ ︸
:B

)

︸ ︷︷ ︸
:C

)

︸ ︷︷ ︸
:A×C

)

i.e., (πp, g(π′p)) : A× C.

35

Types (5)
At the right we see one of the standard notations
for type inference:

(π p︸︷︷︸
:A×B︸ ︷︷ ︸
:A

, g︸︷︷︸
:B→C

(π′ p︸︷︷︸
:A×B︸ ︷︷ ︸
:B

)

︸ ︷︷ ︸
:C

)

︸ ︷︷ ︸
:A×C

)

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

The tree at the right is a derivation of (πp, g(π′p)):A×C
from hypotheses p:A×B and g:B→C
(in a type system that is still unnamed)

36

Types (6)
We had these rules in the slide “Types (2)”...

1) if f : A → B and a : A then f(a) : B
2) if a : A and b : B then (a, b) : A×B
3) if p : A×B then πp : A and π′p : B

They become tree rules, written with bars:

f :A→B a:A

f(a)
app

a:A b:B

(a, b):A×B
pair

p:A×B

πp′:B
π′

p:A×B

πp′:B
π′

37

Types (7)
Each bar in a valid derivation is a
substituition instance of one of the rules...

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

(
a:A b:B

(a, b):A×B
pair

)[a:=πp
b:=g(π′p)
B:=C

]
=

(
πp:A g(π′p):C

(πp, g(π′p)):A×C
pair

)

38

(Re)constructing missing information
Students are very good to learn syntax from examples.
Exercise: I ask the students to reconstruct the
missing information in trees that have just a few
term names, types, and rule names...

p:A×B

πp:?
?

g:B→C

p:A×B

π′p:?
?

g(π′p):?
?

(πp, g(π′p)):?
?

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

))SSS
SSSS

S

p:A×B

?:A
?

g:B→C

p:A×B

?:B
?

?:C
?

?:A×C
?

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

//

p:A×B

?
π

g:B→C

p:A×B

?
π′

?
app

?
pair

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

55kkkkkkk

39

p:A×B

πp:?
?

g:B→C

p:A×B

π′p:?
?

g(π′p):?
?

(πp, g(π′p)):?
?

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

))SSS
SSSS

S

p:A×B

?:A
?

g:B→C

p:A×B

?:B
?

?:C
?

?:A×C
?

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

//

p:A×B

?
π

g:B→C

p:A×B

?
π′

?
app

?
pair

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

55kkkkkkk

40

Erasing and reconstructing (and ‘λ’s)
Erasing information is easy.
Reconstructing information is harder
(and may not be always possible)...
What if the tree below is the result of taking
something bigger, and erasing information from it?

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

This is the key idea for
understanding ‘λ’s and discharges!!!

41

Erasing and reconstructing (and ‘λ’s) (2)
What happens if we add to the left of each term,
or to the left of each “term : type”,
a list of free variables, written as “free variables `”?

p

πp

g

p

π′p

g(π′p)

(πp, g(π′p))

oo erase

reconstruct
//____

p:A×B

πp:A
π

g:B→C

p:A×B

π′p:B
π′

g(π′p):C
app

(πp, g(π′p)):A×C
pair

p ` p

p ` πp

g ` g

p ` p

p ` π′p

g, p ` g(π′p)

g, p ` (πp, g(π′p))

oo erase

reconstruct
//____ ?

42

Erasing and reconstructing (and ‘λ’s) (3)
In all the “standard” rules the context of the conclusion
will be the union of the contexts of the hypotheses.
The new rule ‘λ’ is not standard.
It “discharges” a variable from the list of free variables,
and transfers it to the right of the ‘`’, into the ‘λ.

f ` f a ` a

f, a ` fa

g ` g a ` a

g, a ` ga

f, g, a ` (fa, ga)

f, g ` λa.(fa, ga)
λ

f :A→B a:A

fa:B
app

g:A→C a:A

ga:C
app

(fa, ga):B×C
pair

(λa:A.(fa, ga)):A→(B×C)
λ

43

How discharges are marked
Convention: the context is the list of undischarged hypotheses;
a bar marked as “λ; 1” discharges the hypotheses marked “[·]1”.

f [a]1

fa

g [a]1

ga

(fa, ga)

λa.(fa, ga)
λ; 1

f ` f a ` a

f, a ` fa

g ` g a ` a

g, a ` ga

f, g, a ` (fa, ga)

f, g ` λa.(fa, ga)
λ

44

The connection with Natural Deduction
Look at the tree below.
Each node of it is of the form “term : type”,
The contexts (listing free variables) are not shown,
the names of the rules are not shown (except for ‘λ’),
but the discharges are marked...

f :A→B [a:A]1

fa:B

g:A→C [a:A]1

ga:C

(fa, ga):B×C

(λa:A.(fa, ga)):A→(B×C)
λ; 1

What happens if we erase the terms and leave only the types?
And if after that we display the contexts?

45

The connection with Natural Deduction (2)
After erasing the terms we get this,

A→B [A]1

B

A→C [A]1

C

B×C

A→(B×C)
1

After adding the contexts we get this:

A→B ` A→B [A ` A]1

A→B,A ` B

A→C ` A→C [A ` A]1

A→C,A ` C

A→B,A→C,A ` B×C

A→B,A→C ` A→(B×C)
1

46

The connection with Natural Deduction (2)
If we change the notation a bit we get trees that talk
about propositions and logic:

P→Q [P]1

Q

P→R [P]1

R

Q∧R
P→(Q∧R)

1

P→Q ` P→Q [P ` P]1

P→Q,P ` Q

P→R ` P→R [P ` P]1

P→R,P ` R

P→Q,P→R,P ` Q∧R
P→Q,P→R ` P→(Q∧R)

1

“If P→Q and P→R are true then P→(Q∧R) is true”.

47

Mixed judgments
In the beginning (on Discrete Maths) we saw contexts
that mixed type declarations (working as generators)
and propositions (working as filters)...

We looked at set comprehensions in detail:
{ a ∈ {1, 2}, b ∈ {2, 3}, a < b ; 10a+ b } = {12, 13, 23}
and I mentioned briefly “mixed” judgments like this one:
a:{1, 2}, b:{2, 3}, a < b ` (10a+ b):N

We can interpret these mixed judgments in λ-calculus
if we use a trick called “propositions-as-types”.

48

Propositions-as-types
We saw this tree (“in logic”) as having only types:

P→Q [P]1

Q

P→R [P]1

R

Q∧R
P→(Q∧R)

1

if we add “terms” to it we get:

f :P→Q [p:P]1

fp:Q

g:P→R [p:P]1

gp:R

(fp, gp):Q×R

(λp:P.(fp, gp)):P→(Q×R)
1

49

Propositions-as-types (2)
We can unify the notations by doing this:

f :JP→QK [p:JP K]1

fp:JQK
[p:JP K]1 g:JP→RK [p:JP K]1

gp:JRK
(fp, gp):JQ∧RK

(λp:P.(fp, gp)):JP→(Q∧R)K 1

where JP→QK := JP K→JQK
and JP∧QK := JP K × JQK.
JP K is the “type of evidence” for the proposition P .
In the simplest model,
JP K = ∅ when P is false, and
JP K is a singleton set when JP K is true.

50

Propositions-as-types (3)
Warning! Warning!

In the simplest model,
JP K = ∅ when P is false, and
JP K is a singleton set when JP K is true.

However, adults usually prefer the “BHK interpretation”,
in which JP K is the set of proofs for the proposition P ...
See section 1.2.3 of Hermógenes Oliveira’s PhD Dissertation:
“Inference Rules and the Meaning of the Logical Constants”
(2019).

51

Propositions-as-types (4)
A set is inhabited when it has an element.
A set JP K is inhabited iff P is true.
A proof of P→Q,P→R ` P→(Q∧R) must show that
if JP→QK and JP→RK are inhabited
then JP→(Q∧R)K is inhabited.
Here is a proof of P→Q,P→R ` P→(Q∧R):

f :JP→QK, g:JP→RK ` (λp:P.(fp, gp)):JP→(Q∧R)K

This term λp:P.(fp, gp) can obtained by
1) finding a proof in ND for P→Q,P→R ` P→(Q∧R),
2) interpreting that proof as “types”,
3) reconstructing its “terms”...
i.e., by proof search followed by term inference.

52

The obvious term of type such-and-such
Suppose that we know a function f : A → B and a set C.
Then “f induces a function (f×C) : A×C → B×C
in a natural way”.

How do we discover the function that
“deserves the name” (f×C)?

Trick: “in a natural way” usually means
“using only the operations from λ-calculus”, (!!!!!!!)
i.e., “a λ-term”.

f :A→B

(f×C):A×C→B×C ⇒
A→B

A×C→B×C ⇒ (...)

53

A→B

A×C→B×C ⇒

[A×C]1

A A→B

B

[A×C]1

C

B×C

A×C→B×C
1

⇒

[p:A×C]1

πp:A f :A→B

f(πp):B

[p:A×C]1

π′p:C

(f(πp), π′p):B×C

(λp:A×C:(f(πp), π′p)):A×C→B×C
1

⇒ (f×C) := (λp:A×C:(f(πp), π′p))

54

Cartesian Closed Categories
The ability to find
“the obvious term of type such-and-such”
is exactly what we need to learn Category Theory
starting by the “archetypal CCC”, Set...

A×C Aoo �

B×C Boo �

D C→D� //

E C→E� //

A

B

f

��

A×C

B×C

(×C)f

��

oo �

B×C

D

h[

g

��

B

C→D

h
g]

��

oo �� //

D

E

k

��

C→D

C→E

(C→)k

��

� //

(×C)f := λp:A×C.(f(πp), π′p)
h[:= λq:B×C.(h(πq))(π′q)
g] := λb:B.λc:C.g(b, c)

(C→)k := λϕ:C→D.λc:C.k(ϕc)

55

Cartesian Closed Categories (2)
Fix an object C of Set. We have “obvious”
functors (×C) and (C→), and an adjunction (×C) a (C→)...
(“obvious” means “definable in λ-calculus!”)

A×C Aoo �

B×C Boo �

D C→D
� //

E C→E� //

A

B

f

��

A×C

B×C

(×C)f

��

oo �

B×C

D

h[

g

��

B

C→D

h
g]

��

oo �� //

D

E

k

��

C→D

C→E

(C→)k

��

� //

(×C)f := λp:A×C.(f(πp), π′p)
h[:= λq:B×C.(h(πq))(π′q)
g] := λb:B.λc:C.g(b, c)

(C→)k := λϕ:C→D.λc:C.k(ϕc)

56

“Logics”
Remember that the (second-semester) course is called
“λ-Calculus, Logics, and Translations”...
The “Logics” is because the course also presents
Planar Heyting Algebras, like this one:

B =

32

20
21
22

10
11
12

00
01
02

and we see that we can interpret Propositional
Intuitionistic Logic (“PIL”) in B (and later in the course
in any topology!), and that we have a “logical” adjunction
(∧Q) a (Q→)... but this doesn’t matter for these slides.

Part 3
Dependent types and
Pure Type Systems

58

Notation:
A:Θ, B:Θ, C:Θ, p : A×B, g : B → C ` (πp, g(π′p)) : A× C

59

Judgments
Remember that in:
{ a ∈ {1, 2}, b ∈ {2, 3}, a < b ; 10a+ b } = {12, 13, 23}
We also have a “context” at the left of the ‘`’,
and we can read
A:Θ, B:Θ, C:Θ, p : A×B, g : B → C ` (πp, g(π′p)) : A× C
as: for every choice of

a set A,
a set B,
a set C,
p : A×B,
g : B → C,

we can calculate (πp, g(π′p)) without errors,
and we will have (πp, g(π′p)) ∈ A× C.

60

Judgments (2)
Remember that in
{ a ∈ {1, 2}︸ ︷︷ ︸

gen

, b ∈ {2, 3}︸ ︷︷ ︸
gen

, a < b︸ ︷︷ ︸
filt︸ ︷︷ ︸

context

; 10a+ b︸ ︷︷ ︸
expr

}

the context has “generators” (“var ∈ set”)
and “filters” (“this expression must be true”).

In
A:Θ︸︷︷︸
v:T

, B:Θ︸︷︷︸
v:T

, C:Θ︸︷︷︸
v:T

, p : A×B︸ ︷︷ ︸
v:T

, g : B → C︸ ︷︷ ︸
v:T︸ ︷︷ ︸

context

` (πp, g(π′p))︸ ︷︷ ︸
term

: A× C︸ ︷︷ ︸
type︸ ︷︷ ︸

conclusion
the context is made of several declarations of the form
“variable : type”...

61

Judgments (3)
If we think — informally — that
Θ is the “set of all sets” (mnemonic: Theta for “Theths”),
then we can put these judgments for λ-calculus in
a very homogeneous form...

A:Θ︸︷︷︸
v:T

, B:Θ︸︷︷︸
v:T

, C:Θ︸︷︷︸
v:T

, p : A×B︸ ︷︷ ︸
v:T

, g : B → C︸ ︷︷ ︸
v:T︸ ︷︷ ︸

context

` (πp, g(π′p))︸ ︷︷ ︸
term

: A× C︸ ︷︷ ︸
type︸ ︷︷ ︸

conclusion

the context is a series of declarations of the form “var : type”,
and the conclusion is of the form “term : type”.

62

“Simple typing, Curry-style in λ”
(↑) This is the title of chapter 12 in Hindley/Seldin (2008).
Here is a derivation in their system TA→

λ , from p.161:

1

[x : ρ → σ → τ]

2

[z : ρ]

xz : σ → τ
(→ e)

3

[y : ρ → σ]

2

[z : ρ]

yz : σ
(→ e)

xz(yz) : τ
(→ e)

λz.xz(yz) : (ρ → τ)
(→ i− 2)

λyz.xz(yz) : (ρ → σ) → ρ → τ
(→ i− 3)

λxyz.xz(yz) : (ρ → σ → τ) → (ρ → σ) → ρ → τ
(→ i− 1)

63

“Simple typing, Curry-style in λ” (2)
If we take the previous derivation,

rename

 ρ:=A
σ:=B
τ :=C
z:=a
y:=f
x:=g

 in it,

add some parentheses, and rewrite λgfa to λg.λf.λa, we get:
1

[g : A → (B → C)]

2

[a : A]

ga : B → C
(→ e)

3

[f : A → B]

2

[a : A]

fa : B
(→ e)

(ga)(fa) : C
(→ e)

λa.(ga)(fa) : A → C
(→ i− 2)

λf.λa.(ga)(fa) : (A → B) → (A → C)
(→ i− 3)

λg.λf.λa.(ga)(fa) : (A → (B → C)) → ((A → B) → (A → C))
(→ i− 1)

64

“Simple typing, Curry-style in λ” (3)
If we rename its rules to ‘app’ and ‘λ’
and change the notation for discharge of hypotheses a bit,
we get:
[g : A → (B → C)]1 [a : A]2

ga : B → C
app

[f : A → B]3 [a : A]2

fa : B
app

(ga)(fa) : C
app

λa.(ga)(fa) : A → C
λ; 2

λf.λa.(ga)(fa) : (A → B) → (A → C)
λ; 3

λg.λf.λa.(ga)(fa) : (A → (B → C)) → ((A → B) → (A → C))
λ; 1

65

“Simple typing, Curry-style in λ” (4)
If we interpret a rule like ‘λ; 2’ as
“introduce a ‘λ’ and discharge the hypothesis ‘2’ ”,
and we use a ` to display the undischarged hypotheses
at some nodes starting from the bottom, we get:

[g:A→(B→C)]1 [a:A]2

ga:B→C
app

[f :A→B]3 [a:A]2

fa:B
app

a:A, f :A→B, g:A→(B→C) ` (ga)(fa):C
app

f :A→B, g:A→(B→C) `λa.(ga)(fa):A→C
λ; 2

g:A→(B→C) `λf.λa.(ga)(fa):(A→B)→(A→C)
λ; 3

`λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))
λ; 1

The undischarged hypotheses are exactly the free variables!

66

“Simple typing, Curry-style in λ” (5)
If we extend the idea
“The undischarged hypotheses are exactly the free variables”
to the nodes in the second line, inheriting the order
from below — first a, then f , then g — we get:

[g:A→(B→C)]1 [a:A]2

a:A, g:A→(B→C) ` ga:B→C
app

[f :A→B]3 [a:A]2

a:A, f :A→B ` fa:B
app

a:A, f :A→B, g:A→(B→C) ` (ga)(fa):C
app

f :A→B, g:A→(B→C) `λa.(ga)(fa):A→C
λ; 2

g:A→(B→C) `λf.λa.(ga)(fa):(A→B)→(A→C)
λ; 3

`λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))
λ; 1

67

“Simple typing, Curry-style in λ” (6)
The passage from the 2nd line to the 3rd line takes the contexts
“a:..., g:... `” and “a:..., f :... `” above the line and produces
a context “a:..., f :..., g:... `” below, that is the union
of the the contexts above:

[g:A→(B→C)]1 [a:A]2

a:A, g:A→(B→C) ` ga:B→C
app

[f :A→B]3 [a:A]2

a:A, f :A→B ` fa:B
app

a:A, f :A→B, g:A→(B→C) ` (ga)(fa):C
app

f :A→B, g:A→(B→C) `λa.(ga)(fa):A→C
λ; 2

g:A→(B→C) `λf.λa.(ga)(fa):(A→B)→(A→C)
λ; 3

`λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))
λ; 1

68

“Simple typing, Curry-style in λ” (7)
If we extend these two ideas — free variables and union —
to the top line, we get this:
[g:A→(B→C) ` g:A→(B→C)]1 [a:A ` a:A]2

a:A, g:A→(B→C) ` ga:B→C
app

[f :A→B ` f :A→B]3 [a:A ` a:A]2

a:A, f :A→B ` fa:B
app

a:A, f :A→B, g:A→(B→C) ` (ga)(fa):C
app

f :A→B, g:A→(B→C) `λa.(ga)(fa):A→C
λ; 2

g:A→(B→C) `λf.λa.(ga)(fa):(A→B)→(A→C)
λ; 3

`λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))
λ; 1

69

“Simple typing, Curry-style in λ” (8)
If we extend these two ideas to the top line
and we erase the things like ‘[]2’ and ‘; 2’,
we get something whose intuitive semantics is very simple,
and that will be our motivation for more advanced
type systems...

g:A→(B→C) ` g:A→(B→C) a:A ` a:A

a:A, g:A→(B→C) ` ga:B→C
app

f :A→B ` f :A→B a:A ` a:A

a:A, f :A→B ` fa:B
app

a:A, f :A→B, g:A→(B→C) ` (ga)(fa):C
app

f :A→B, g:A→(B→C) `λa.(ga)(fa):A→C
λ

g:A→(B→C) `λf.λa.(ga)(fa):(A→B)→(A→C)
λ

`λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))
λ

...but this derivation suggests that the judgments in the top
line are axioms. Let’s change this...

70

“Simple typing, Curry-style in λ” (9)
Let’s create a rule ‘v’ that works like this: “if A→B is a set
then we can introduce a variable whose domain is A→B”,
and a rule ‘→’ that works like this: “if A is a set and B→C is
a set then A→(B→C) is a set:

A:Θ

B:Θ C:Θ

B→C:Θ
→

A→(B→C):Θ
→

g:A→(B→C) ` g:A→(B→C)
v

A:Θ

a:A ` a:A
v

a:A, g:A→(B→C) ` ga:B→C
app

A:Θ B:Θ

A→B:Θ
→

f :A→B ` f :A→B

A:Θ

a:A ` a:A

a:A, f :A→B ` fa:B
app

a:A, f :A→B, g:A→(B→C) ` (ga)(fa):C
app

f :A→B, g:A→(B→C) `λa.(ga)(fa):A→C
λ

g:A→(B→C) `λf.λa.(ga)(fa):(A→B)→(A→C)
λ

`λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))
λ

71

“Simple typing, Curry-style in λ” (10)
If we fold, as in an accordion,
the middle part of the last derivation, we get:

A:Θ B:Θ C:Θ

` λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))

and we can interpret this as:
if we know the values of A,B,C (and they are “:Θ”, i.e., sets),
then the judgement below the double bar is true.
For example, this holds when
A = {1, 2}, B = {3, 4}, C = {5, 6}.

72

Back to types
Remember that we had:

1) if f : A → B and a : A then f(a) : B
2) if a : A and b : B then (a, b) : A×B
3) if p : A×B then πp : A and π′p : B

and:
A:Θ B:Θ C:Θ

` λg.λf.λa.(ga)(fa):(A→(B→C))→((A→B)→(A→C))

73

back-to-types-2
Let’s try to list all the rules that we saw up to this point.
We have rules that produce new sets, and
rules that produce new elements of sets.
The only rules that do something strange to the context
are the rule ‘λ’, that moves a hypothesis from the context
to the λ, and the rule ‘v’, the introduces a new variable
at both sides of the ‘`’...

74

Impurities
We are using a non-standard trick here to present λ-calculus
in a way that feels concrete. I call it “impurities”.
I learned Pure Type Systems ages ago (2002?) from Herman
Geuvers’s PhD thesis. Everything was very abstract in it (no
semantics! No intuition!), and very syntactical. He didn’t
explain what “pure” means...
Let me show an abstract of a talk that I gave in 2002.

75

“A System of Natural Deduction for Categories”
http://angg.twu.net/math-b.html#FMCS-2002
Abstract:
We will present a logic (system DNC) whose terms represent
categories, objects, morphisms, functors, natural transforma-
tions, sets, points, and functions, and whose rules of deduc-
tion represent certain constructive operations involving those
entities. Derivation trees in this system only represent the “T-
part” (for “terms” and “types”) of the constructions, not the
“P-part” (“proofs” and “propositions”): the rules that gen-
erate functors and natural transformations do not check that
they obey the necessary equations. So, we can see derivations
in this system either as constructions happening in a “syntac-
tical world”, that should be related to the “real world” in some

http://angg.twu.net/math-b.html#FMCS-2002

76

way (maybe through meta-theorems that are yet to be found),
or as being just “skeletons” of the real constructions, with the
P-parts having been omitted for briefness.
(2nd paragraph deleted)
The way to formalize DNC, and to provide a translation be-
tween terms in its “logic” and the usual notations for Cate-
gory Theory, is based on the following idea. Take a deriva-
tion tree D in the Calculus of Constructions, and erase all the
contexts and all the typings that appear in it; also erase all
the deduction steps that now look redundant. Call the new
tree D′. If the original derivation, D, obeys some mild condi-
tions, then it is possible to reconstruct it — modulo exchanges
and unessential weakenings in the contexts — from D′, that
is much shorter. The algorithm that does the reconstruction

77

generates as a by-product a “dictionary” that tells the type
and the “minimal context” for each term that appears in D′;
by extending the language that the dictionary can deal with
we get a way to translate DNC terms and trees — and also,
curiously, with a few tricks more, and with some minimal in-
formation to “bootstrap” the dictionary, categorical diagrams
written in a DNC-like language.
(End of the abstract.)

So
I started to add “impurities” to PTSs an in informal way, mix-
ing PTS syntax and mathema
to be able to present judgments in a
I gave some talks that
To make a long story short, I added “impurities” to a Pure

78

Type System — in an informal way! — to be able to present
PTS
Here is a part of the
I was working on a kind of “Curry-Howard for CT”
I gave some talks that year
I had to make some presentations in conferences that year
Note that we started from expressions with ‘λ’s and types that
were quite concrete, like
Interlude: Logic for Children
From the webpage of the LfC workshop at the UniLog 2018:

The “children” in “logic for children” means “people without
mathematical maturity”, which in its turn means people who:

• have trouble with very abstract definitions,

79

• prefer to start from particular cases (and then generalize),
• handle diagrams better than algebraic notations,
• like to use diagrams and analogies.

If we say that categorical definitions are “for adults” — because
they may be very abstract — and that particular cases, dia-
grams, and analogies are “for children”, then our intent with
this workshop becomes easy to state. “Children” are willing
to use “tools for children” to do mathematics, even if...

80

Logic for Children (2)
From the webpage of the LfC workshop at the UniLog 2018:

(...) “Children” are willing to use “tools for children” to do
mathematics, even if they will have to translate everything to
a language “for adults” to make their results dependable and
publishable, and even if the bridge between their tools “for
children” and “for adults” is somewhat defective, i.e., if the
translation only works on simple cases...
We are interested in that bridge between maths “for adults”
and “for children” in several areas. Maths “for children” are
hard to publish, even informally as notes (see this thread in the
Categories mailing list), so often techniques are rediscovered
over and over, but kept restricted to the “oral culture” of the
area.

81

Logic for Children: tools
We are going to use three “tools for children here”...
1. Parallel diagrams: particular / general particular

case
“for children”

 oo
particularize

(easy)

generalize
(hard)

//

 general
case

“for adults”


The diagrams for the general case and for a particular case
have the same shape — or have very similar shapes.

82

Logic for Children: tools (2)
We are going to use three “tools for children here”...
2. External / internal views (‘→’ / ‘ 7→’)

√
: N → R

n 7→
√
n

−1
0 0
� //

1 1� //

2
√
2� //

3
√
3� //

4 2� //

n
√
n� //

N R
√

//

83

Logic for Children: tools (3)
We are going to use three “tools for children here”...
3. The object “deserving a name”

A A×C
� (×C) //A

B

f

��

A×C

B×C

(×C)f

��

� //

B B×C� //

a (a, c)+3a

b

_

��

(a, c)

(b, c)

_

��

� //

b (b, c)+3

(×C)(A) := A× C
(×C)(f) := ((a, c) 7→ (b, c))

= (λ(a, c).(b, c))
= (λ(a, c).(f(a), c))
= (λ(a, c).(f(π(a, c)), π′(a, c)))
= (λp.(f(πp), π′p))

Note: I was obsessed by this idea for years, but it took me a long time to
formalize it... it was incredibly useful as a private notation, but it seemed to
work only in small examples. The trick to make it work is to use dictionaries.
Article: “Internal Diagrams and Archetypal Reasoning in Category Theory”
[Ochs2013]. I still love about 80% of it, but I abandoned the idea of “down-
casing types”.
In the course about λ-Calculus, Logics, and Translation I don’t even mention
to the students that that paper exists.

84

End of the interlude
Let’s go back to what our (2nd-semester) students see in the
course!

85

Spaces of functions
Let: A = {1, 2}, B = {3, 4}, C1 = {5, 6}, C2 = {7, 8, 9}.
If f : A → B then there are four possible values for f ...
Trick: our first interpretation for ‘:’ is ‘∈’,
and A → B is BA — the set of functions from A to B.

f : A → B means that f can be
{(1, 3), (2, 3)} or
{(1, 3), (2, 4)} or
{(1, 4), (2, 3)} or
{(1, 4), (2, 4)}, so

(A → B) = BA =

{ {(1,3),(2,3)},
{(1,3),(2,4)},
{(1,4),(2,3)},
{(1,4),(2,4)}

}

86

Spaces of functions (2)
Let: A = {1, 2}, B = {3, 4}, C1 = {5, 6}, C2 = {7, 8, 9}.
If f : A → B then f takes each a ∈ A to an element of B.
Let g be a function that takes each a ∈ A to an element of Ca.

This means that g can be
{(1, 5), (2, 7)} or
{(1, 5), (2, 8)} or
{(1, 5), (2, 9)} or
{(1, 6), (2, 7)} or
{(1, 6), (2, 8)} or
{(1, 6), (2, 9)}...

f ∈ { b1 ∈ B, b2 ∈ B; {(1, b1), (2, b2)} } = Πa:A.B = (A → A)
g ∈ { c1 ∈ C1, c2 ∈ C2; {(1, c1), (2, c2)} } = Πa:A.Ca

87

Spaces of functions (3)
From last page:
f ∈ { b1 ∈ B, b2 ∈ B; {(1, b1), (2, b2)} } = Πa:A.B = (A → B)
g ∈ { c1 ∈ C1, c2 ∈ C2; {(1, c1), (2, c2)} } = Πa:A.Ca

Compare:
{ b1 ∈ B, b2 ∈ B; {(1, b1), (2, b2)} } = Πa:{1, 2}.B
{ c1 ∈ C1, c2 ∈ C2; {(1, c1), (2, c2)} } = Πa:{1, 2}.Ca

{ b1 ∈ B, b2 ∈ B; (b1, b2) } = B ×B
{ c1 ∈ C1, c2 ∈ C2; (c1, c2) } = C1 × C2

Πi:{7, 42, 99, 200}.Di is similar to
D7 ×D42 ×D99 ×D200, but
the first returns functions and
the second return 4-uples.

88

Spaces of functions (4): dependent products
Πi:{7, 42, 99, 200}.Di is similar to
D7 ×D42 ×D99 ×D200, but
the first returns functions and
the second return 4-uples.

Terminology (half-weird):
Πa:A.Ca and Πi:I.Di are dependent products.
Some type systems define (A → B) = BA := Πa:A.B.

Dependent products generaliize exponentials!!! Yuck!!!!

89

Pure Type Systems: first rules
Kamareddine/Laan/Nederperlt (2004), p.117:

` s1:s2
ax (s1, s2) ∈ A

Γ ` A:s

Γ, x:A ` x:A
start

Γ ` A:B Γ ` C:s

Γ, x:C ` A:B
weak

Γ ` A:s1 Γ, x:A ` B:s2

Γ ` (Πx:A.B):s3
Π (s1, s2, s3) ∈ R

Γ, a:A ` b:B Γ ` (Πa:A.B):s

Γ ` (λa:A.b):(Πa:A.B)
λ

Specification: (S,A,R) with A ⊆ S2, R ⊆ S3

For λ1: S = {∗,�}, A = {(∗,�)}, R = {(∗, ∗, ∗)}

90

Pure Type Systems: first rules (2)
We will change the notation slightly, to:

` s1:s2
a (s1, s2) ∈ A

Γ ` A:s

Γ, x:A ` x:A
vs

Γ ` A:B Γ ` C:s

Γ, x:C ` A:B
ws

Γ ` A:s1 Γ, x:A ` B:s2

Γ ` (Πx:A.B):s3
Πs1s2s3 (s1, s2, s3) ∈ R

Γ, a:A ` b:B Γ ` (Πa:A.B):s

Γ ` (λa:A.b):(Πa:A.B)
λ

Specification: (S,A,R) with A ⊆ S2, R ⊆ S3

For λ1: S = {Θ,�}, A = {(Θ,�)}, R = {(Θ,Θ,Θ)}

91

Pure Type Systems: a derivation
Derivations in a PTS have lots of bureaucracy.
This is what we need to derive A:Θ, B:Θ ` (Πa:A.B):Θ:

` Θ:�
a

` Θ:�
a

A:Θ ` Θ:�
w�

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, B:Θ ` A:Θ
w�

` Θ:�
a

` Θ:�
a

A:Θ ` Θ:�
w�

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, B:Θ ` A:Θ
w�

` Θ:�
a

` Θ:�
a

A:Θ ` Θ:�
w�

A:Θ, B:Θ ` B:Θ
v�

A:Θ, B:Θ, a:A ` B:Θ
wΘ

A:Θ, B:Θ ` (Πa:A.B):Θ
ΠΘΘΘ

i.e.:

A:Θ, B:Θ ` A:Θ

A:Θ ` Θ:�

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, B:Θ ` A:Θ
w�

` Θ:�
a

` Θ:�
a

A:Θ ` Θ:�
w�

A:Θ, B:Θ ` B:Θ
v�

A:Θ, B:Θ, a:A ` B:Θ
wΘ

A:Θ, B:Θ ` (Πa:A.B):Θ
ΠΘΘΘ

92

Pure Type Systems: a derivation (2)
This is what we need to derive A:Θ ` (λa:A.a):(Πa:A.A):

A:Θ ` A:Θ

A:Θ, a:A ` a:A
vΘ

A:Θ ` A:Θ

A:Θ ` A:Θ

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, a:A ` A:Θ
wΘ

A:Θ ` (Πa:A.A):Θ
ΠΘΘΘ

A:Θ ` (λa:A.a):(Πa:A.A)
λ

93

Every variable is two levels below a sort
We had A:Θ:�, B:Θ:� — A and B are sets,
and a:A:Θ — a is an element of a set.
We had (A→B) = (Πa:A.B), and f :(Πa:A.B):Θ.
Convention on names of variables:
A, B (uppercase) for sets, a, b, f (lowercase) for elements.
The rules v� and w� introduce variables two levels below �.
the rules vΘ and wΘ introduce variables two levels below Θ.

A:Θ ` A:Θ

A:Θ, a:A ` a:A
vΘ

A:Θ ` A:Θ

A:Θ ` A:Θ

` Θ:�
a

A:Θ ` A:Θ
v�

A:Θ, a:A ` A:Θ
wΘ

A:Θ ` (Πa:A.A):Θ
ΠΘΘΘ

A:Θ ` (λa:A.a):(Πa:A.A)
λ

94

More sorts
Some of the Pure Type Systems that we will see later will have
specifications like (S,A,R) = ({Ω,Θ,�}, {(Ω,�), (Θ,�)}, ...).
Their axioms are Ω:Θ and Θ:� — i.e., they have Ω:Θ:�.
Their variables are of four kinds:

element : set : Θ : �
witness : proposition : Ω : Θ

I prefer to think on that as:
element : set : Θ

witness : proposition : Ω

Convention on names of variables:
a, b, f : A,B : Θ

p, q : P,Q : Ω

95

PAT: Propositions As Types / Proofs As Terms
See Kamareddine/Laan/Nederperlt (2004), chapter 4, for PAT,
Hermogenes Oliveira’s PhD Thesis for the BHK interpretation.
The standard way to think of

element : set : Θ
witness : proposition : Ω

is to interpret each proposition P as the set of its proofs,
and a witness p:P as an element of P ; propositions that are
false have no proofs.
I believe that we develop intuition about PAT quicker if we
start with a model in which Ω = {F,T}, F is an empty set, T
is a singleton set; each proposition is interpreted as its truth-
value, and all proofs/witnesses of a true proposition (i.e., ele-
ments of T!) are identified.

96

Θ in the naïve model
[The most common error]
Lambda notation
Propositions and very small sets

