Cálculo 3 - 2020.1

Aulas 7 e 8: dx, Δx e série de Taylor

Eduardo Ochs - RCN/PURO/UFF http://angg.twu.net/2020.1-C3.html

Na aula passada nós fizemos alguns exercícios pra revisar a linguagem que o João Carlos Vieira Sampaio, da UFSCar, usou na "Aula 14" dele – que vamos tentar decifrar. Links:

https://www.dm.ufscar.br/profs/sampaio/calculo1_aula14.pdf http://angg.twu.net/LATEX/2020-1-C3-taylor-2.pdf

Nos nossos exercícios nós mantivemos as várias linguagens separadas – veja a próxima página. Nos itens [a], [b], [c], usamos a "notação de Lagrange", f'(x); nos itens [a'], [b'], [c'] usamos a "notação de Leibniz", $\frac{dy}{dx}$, e no item [c"] começamos a usar diferenciais, como dx e dy, que o João Carlos explica na seção 14.2 da aula dele.

$$g(x) = \sqrt{x^{2} + f(x)}$$

$$= (x^{2} + f(x))^{3/2}$$

$$= (x^{2} + f(x))^{3/2}$$

$$= \frac{1}{2}(x^{2} + f(x))^{-\frac{3}{2}} \frac{1}{2}(x^{2} + f(x))$$

$$= \frac{1}{2}(x^{2} + f(x))^{-\frac{3}{2}}(2x + f(x))$$

$$= \frac{2x + f(x)}{2\sqrt{x^{2} + f(x)}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{3/2}}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + \frac{1}{2}(x))}{2\sqrt{x^{2} + y}}$$

$$= \frac{2x + \frac{1}{2}(x^{2} + y)^{-\frac{3}{2}}(2x + y)^{-\frac$$

...mas faltou introduzirmos notações como x_0 , x_1 , y_0 , y_1 , Δx , Δy , etc, e juntarmos tudo isto com séries de Taylor e com as aproximações de 1^a e 2^a ordem, que em geral vamos usar na notação de baixo...

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$f(x) \approx f(a) + f'(a)(x-a)$$

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2$$

$$f(x_1) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (\Delta x)^k$$

$$f(x_1) \approx f(x_0) + f'(x_0) \Delta x$$

$$f(x_1) \approx f(x_0) + f'(x_0) \Delta x + \frac{f''(x_0)}{2} \Delta x^2$$

Exercício 1.

Importante: tente fazer tudo aqui sem calculadora exceto nos itens que dizem "usando a calculadora"!

Seja
$$y = f(x) = \sqrt{x}$$
.

- a) Desenhe o gráfico de y = f(x) entre x = 0 e x = 9.
- b) Digamos que $x_0=4$ e $x_1=5$. Calcule y_0 e Δx . Represente graficamente y_1 e Δy sem calculá-los numericamente. Use no seu desenho as convenções da figura 14.3 do João Carlos Sampaio.
 - c) Encontre uma fórmula para calcular $\frac{dy}{dx}$.
 - d) Calcule $\frac{dy}{dx}$ para $x = x_0$.
 - e) Calcule dy no caso em que $x = x_0$ e $dx = \Delta x$.
 - f) Calcule y_1 e Δy usando a calculadora.

A partir de uma das fórmulas de Taylor podemos obter:

$$f(x_1) \approx f(x_0) + f'(x_0)\Delta x$$

$$f(x_1) - f(x_0) \approx f'(x_0)\Delta x$$

$$y_1 - y_0 \approx f'(x_0)\Delta x$$

$$\Delta y \approx \frac{dy}{dx}\Delta x$$

g) Em $f(x_1) \approx f(x_0) + f'(x_0) \Delta x$ o lado esquerdo precisa de calculadora pra ser calculado e o lado direito é uma aproximação pra ele que pode ser calculada sem calculadora. Calcule $f(x_1)$ usando calculadora e compare os valores dos dois lados do ' \approx '.

Exercício 2.

Refaça todos os itens do exercício 1 mas agora usando $x_1 = 1$.

Exercício 3.

Nos exercícios anteriores você aprender a calcular aproximações para o y_1 sem calculadora e o y_1 "de verdade" pra valores de x_1 dados... agora vamos generalizar isto. Seja:

$$g(x_1) = f(x_0) + f'(x_0)\Delta x$$

= $f(x_0) + f'(x_0)(x_1 - x_0)$

- a) Calcule $g(x_0)$ e $g'(x_0)$. Lembre que ainda estamos usando $x_0 = 4$.
- b) Represente num gráfico só as curvas y=f(x) e y=g(x). Obs: g é uma reta.
- c) Calcule f(0), g(0), f(9), g(9), f(-2), g(-2). Obs: se você souber calcular g(0), g(9) e g(-2) só pelo gráfico sem escrever as contas é melhor ainda.

Dá pra fazer algo parecido pra aproximações de 2ª ordem:

$$g(x_1) = f(x_0) + f'(x_0)\Delta x$$

$$= f(x_0) + f'(x_0)(x_1 - x_0)$$

$$h(x_1) = f(x_0) + f'(x_0)\Delta x + \frac{f''(x_0)}{2}\Delta x^2$$

$$= f(x_0) + f'(x_0)(x_1 - x_0) + \frac{f''(x_0)}{2}(x_1 - x_0)^2$$

Vamos comparar $f(x_1)$ com $h(x_1)$ e ver que a $h(x_1)$ é uma aproximação melhor para a $f(x_1)$ do que $g(x_1)$... mas vai ser mais fácil visualizar isto – e vai ser mais útil pro que vem depois – se usarmos trajetórias.

 $Por\ enquanto$ as nossas fórmulas para aproximações de trajetórias vão ser estas aqui:

$$P(x_1) = (x_1, f(x_1))$$

$$Q(x_1) = P(x_0) + (x_1 - x_0)P'(x_0)$$

$$R(x_1) = P(x_0) + (x_1 - x_0)P'(x_0) + (x_1 - x_0)^2 \frac{P''(x_0)}{2}$$

Exercício 4.

Nós ainda estamos usando $f(x) = \sqrt{x}$ e $x_0 = 4$.

Ainda é pra fazer tudo sem calculadora, exceto onde eu disser.

a) Represente graficamente o traço da trajetória P no intervalo $x_1 \in [0, 9]$ e indique os pontos P(4), P(3) e P(5).

Exercício 4, continuação...

$$P(x_1) = (x_1, f(x_1))$$

$$Q(x_1) = P(x_0) + (x_1 - x_0)P'(x_0)$$

$$R(x_1) = P(x_0) + (x_1 - x_0)P'(x_0) + (x_1 - x_0)^2 \frac{P''(x_0)}{2}$$

- b) Calcule P(4), P'(4) e $\frac{P''(4)}{2}$.
- c) Represente graficamente os pontos Q(4), Q(3) e Q(5). Pra representar Q(3) e Q(5) NÃO FAÇA CONTAS use o ponto $P(x_0)$ e o vetor $P'(x_0)$ e faça tudo direto no gráfico.
- d) Represente graficamente os pontos R(4), R(4+1) e R(4-1). Pra representar R(4+1) e R(4-1) **NÃO FAÇA CONTAS** use o ponto $P(x_0)$ e os vetores $P'(x_0)$ e $\frac{P''(x_0)}{2}$ e faça tudo direto no gráfico. Depois represente graficamente R(4), R(4+2) e R(4-2), também sem fazer contas.

e) Calcule sem calculadora os valores de Q(4.1) e R(4.1), e depois compare-os com o valor de P(4.1) calculado usando calculadora.

Exercício 5

Refaça o exercício 3 da aula 2:

http://angg.twu.net/LATEX/2020-1-C3-vetor-tangente.pdf

- a) Calcule P'(t) e P''(t)/2.
- b) Calcule P(0), P'(0) e P''(0)/2.
- c) Calcule $P(\frac{\pi}{2})$, $P'(\frac{\pi}{2})$ e $P''(\frac{\pi}{2})/2$.

d) Usando a fórmula

$$R(x_0 + \Delta x) = P(x_0) + P'(x_0)\Delta x + \frac{P''(x_0)}{2}\Delta x^2$$

com $x_0 = \frac{\pi}{2}$, represente graficamente os pontos $R(x_0 + 0)$, $R(x_0 + 1)$, $R(x_0 - 1)$, $R(x_0 + 2)$, $R(x_0 - 2)$. Tente fazer o mínimo possível de contas — dá pra representar esses pontos direto no gráfico já que você já sabe $P(\frac{\pi}{2})$, $P'(\frac{\pi}{2})$ e $P''(\frac{\pi}{2})/2$.