|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020badiou-low.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2020badiou-low.tex" :end))
% (defun d () (interactive) (find-pdf-page "~/LATEX/2020badiou-low.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2020badiou-low.pdf"))
% (defun e () (interactive) (find-LATEX "2020badiou-low.tex"))
% (defun u () (interactive) (find-latex-upload-links "2020badiou-low"))
% (defun v () (interactive) (find-2a '(e) '(d)) (g))
% (find-pdf-page "~/LATEX/2020badiou-low.pdf")
% (find-sh0 "cp -v ~/LATEX/2020badiou-low.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2020badiou-low.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2020badiou-low.pdf
% file:///tmp/2020badiou-low.pdf
% file:///tmp/pen/2020badiou-low.pdf
% http://angg.twu.net/LATEX/2020badiou-low.pdf
% (find-LATEX "2019.mk")
% «.title» (to "title")
% «.2020aug04» (to "2020aug04")
\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
%\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-LATEX "edrx15.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
\usepackage[backend=biber,
style=alphabetic]{biblatex} % (find-es "tex" "biber")
\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib")
%
% (find-es "tex" "geometry")
\begin{document}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
\def\Id{\mathbf{Id}}
% «title» (to ".title")
{\setlength{\parindent}{0em}
\footnotesize
Notes on Alain Badiou's
``Logics of Worlds: Being and Event, 2'' (2006, translation 2009):
\url{https://www.bloomsbury.com/uk/logics-of-worlds-9781441172969/}
\ssk
These notes are at:
\url{http://angg.twu.net/LATEX/2020badiou-low.pdf}
\ssk
See:
\url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf}
\url{http://angg.twu.net/math-b.html\#favorite-conventions}
I wrote these notes mostly to test if the conventions above
are good enough.
}
% (find-books "__cats/__cats.el" "badiou-low")
% (find-badioulowpage (+ 18 153) "II.3. Algebra of the Transcendental")
% (find-badioulowpage (+ 18 155) "II.3.2. Function of Appearing and Formal Definition")
% (find-badioulowtext (+ 18 155) "2. Function of Appearing and Formal Definition")
% (find-badioulowpage (+ 18 156) "The minimal requirement")
% (find-badioulowtext (+ 18 156) "The minimal requirement")
% (find-badioulowpage (+ 18 157) "II.3.3. Equivalence-Structure and Order-Structure")
% (find-badioulowtext (+ 18 157) "Equivalence-Structure and Order-Structure")
% (find-badioulowpage (+ 18 191) "Book III Greater Logic, 2. The Object")
% (find-badioulowpage (+ 18 193) "Introduction")
% (find-badioulowpage (+ 18 199) "Section 1 For a New Thinking of the Object")
% (find-badioulowpage (+ 18 199) "1 Transcendental indexing: the phenomenon")
% (find-badioulowpage (+ 18 204) "2 The phenomenon: second approach")
% (find-badioulowpage (+ 18 207) "3 Existence")
% (find-badioulowpage (+ 18 211) "4 Analytic of phenomena: component and atom of appearing")
% (find-badioulowpage (+ 18 217) "5 Real atoms")
% (find-badioulowpage (+ 18 220) "6 Definition of an object")
% (find-badioulowpage (+ 18 221) "7 Atomic logic, 1: the localization of the One")
% (find-badioulowpage (+ 18 225) "8 Atomic logic, 2: compatibility and order")
% (find-badioulowpage (+ 18 229) "9 Atomic logic, 3: real synthesis")
% (find-badioulowpage (+ 18 231) "Section 2 Kant")
% (find-badioulowpage (+ 18 243) "Section 3 Atomic Logic")
% (find-badioulowpage (+ 18 243) "1 Function of appearing")
% (find-badioulowpage (+ 18 245) "2 The phenomenon")
% (find-badioulowpage (+ 18 246) "3 Existence")
% (find-badioulowpage (+ 18 312) "A relation is an oriented connection")
% (find-badioulowtext (+ 18 312) "A relation is an oriented connection")
\newpage
Book II: Greater Logic
II.3. Algebra of the Transcendental
\subsection*{II.3.2. Function of Appearing and Formal Definition of the Transcendental}
(Page 157):
% (find-badioulowpage (+ 18 157) "The idea--a very simple one--")
% (find-badioulowtext (+ 18 157) "The idea--a very simple one--")
The idea --- a very simple one --- is that in every world, given two
beings $α$ and $β$ which are there, there exists a value $p$ of
$\Id(α,β)$. To say that $\Id(α,β)=p$ means that, with regard to their
appearing in that world, the beings $α$ and $β$ --- which remain
perfectly and univocally determined in their multiple composition ---
are identical `to the $p$ degree', or are $p$-identical. The essential
requirement then is that the degrees $p$ are held in an
order-structure, so that for instance it can make sense to say that in
a fixed referential world, $α$ is more identical to $β$ than to $γ$.
In formal terms, if $\Id(α,β) = p$ and $\Id(α,γ) = q$, this means that
$p > q$.
\newpage
% (find-latexgimp-links "GIMP/badiou-low-p157")
% (find-fline "~/LATEX/GIMP/badiou-low-p157.png")
\includegraphics[width=12cm]{GIMP/badiou-low-p157.png}
% (find-latexgimp-links "GIMP/badiou-low-p157-2")
% (find-fline "~/LATEX/GIMP/badiou-low-p157-2.png")
\includegraphics[width=12cm]{GIMP/badiou-low-p157-2.png}
% (ph1p 5 "positional")
% (ph1 "positional")
% (favp 50 "functors-as-objects")
% (fav "functors-as-objects")
The positional notations are explained in \cite[Section 1]{PH1} and
\cite[Section 7.12]{FavC}.
\newpage
% «2020aug04» (to ".2020aug04")
Oi Caron! Tou tentando traduzir algumas definições da seção ``II.3.2.
Function of Appearing and Formal Definition of the Transcendental'' do
LoW pra uma terminologia mais padrão...
Eu deixei a câmera do celular aberta o tempo todo? Caramba...
Vou escrever umas duvidas aqui, aé quando você tiver tempo você ou me
responde ou me diz pra onde eu devo mandar...
Os ``degress of identity'' vão ser os elementos da álgebra de Heyting
dos valores de verdade do topos
Num dos exemplos que eu discuti com você e com o Gabriel a gente
começava com o ``house-shaped DAG'' $H$ que aparece aqui na pagina 27,
\url{http://angg.twu.net/LATEX/2017planar-has-1.pdf\#page=27}
E aí quando a gente montava o topos $\Set^H$ esse topos tinha 10
valores de verdade - a figura no topo da página 27.
Seja 1 o objeto terminal do topos $\Set^H$. Os valores de verdade
desse topos podem tanto ser vistos como os subobjetos desse 1 - lembra
que a gente pode usar a notacao $\Sub(A)$ pra falar do conjunto dos
subobjetos de um objeto $A$
quanto podem ser vistos como os morfismos do objeto 1 pro objeto
$\Omega$, onde $\Omega$ é o classificador.
Eu acho o $\Sub(1)$ mais fácil de visualizar.
Se a gente tem um objeto $A$ num topos os pontos de $A$ são os
morfismos do objeto 1 pro objeto $A$
Eu tou com a impressão de que quando o Badiou define $\Id(\alpha,
\beta)$ esses $\alpha$ e $\beta$ (que na terminologia dele são
``multiples'', se não me engano) são uma coisa um pouco mais
complicada que "pontos" do topos...
...porque tanto $\alpha$ quando $\beta$ podem ter um ``extent'' que é
um subobjeto do 1 que não é o próprio 1.
Na pagina 246 do PDF do LoW que eu tenho o Badiou define $𝐛E x :=
\Id(x,x)$
e um ``multiple'' $\alpha$ não é um morfismo de 1 para $A$, e sim um
morfismo de $𝐛E\alpha$ para $A$. Nao lembro a terminologia usual em
topos theory pra isso... acho que a gente chama de ``partial points''
ao inves de ``points''.
Se for isso eu posso fazer uns desenhos e mandar pro pessoal do seminário
Na verdade eu já tenho vários desses desenhos, é só reciclá-los...
\printbibliography
\end{document}
% __ __ _
% | \/ | __ _| | _____
% | |\/| |/ _` | |/ / _ \
% | | | | (_| | < __/
% |_| |_|\__,_|_|\_\___|
%
% <make>
* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-LATEXfile "2019planar-has-1.mk")
make -f 2019.mk STEM=2020badiou-low veryclean
make -f 2019.mk STEM=2020badiou-low pdf
% Local Variables:
% coding: utf-8-unix
% ee-tla: "blo"
% End: