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Abstract

I used to believe that my conventions for drawing diagrams for
categorical statements could be written down in one page or less, and
that the only tricky part was the technique for reconstructing objects
“from their names” (sec.3)... but then I found out that this is not so.

This is an attempt to explain, with motivations and examples, all
the conventions behind a certain diagram, called the “Basic Example”
in the text. Once the conventions are understood that diagram be-
comes a “skeleton” for a certain lemma related to the Yoneda Lemma,
in the sense that both the statement and the proof of that lemma can
be reconstructed from the diagram. The last sections discuss some
simple ways to extend the conventions; we see how to express in dia-
grams the (“real”) Yoneda Lemma and a corollary of it, how to define
comma categories, and how to formalize the diagram for “geometric
morphism for children” mentioned in sec.1.

People in CT usually only share their ways of visualizing things
when their diagrams cross some threshold of mathematical relevance
— and this usually happens when they prove new theorems with their
diagrams, or when they can show that their diagrams can translate
calculations that used to be huge into things that are much easier to
visualize. The diagrammatic language that I present here lies below
that threshold — and so it is a “private” diagrammatic language,
that I am making public as an attempt to establish a dialogue with
other people who have also created their own private diagrammatic
languages.
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1 Missing diagrams
I need to tell a long story here.
Let me start with some quotes. This one is from Eilenberg and Steenrod

([ES52, p.ix], but I learned it from [Krö07, pp.82–83]):

The diagrams incorporate a large amount of information. Their
use provides extensive savings in space and in mental effort. In
the case of many theorems, the setting up of the correct diagram
is the major part of the proof. We therefore urge that the reader
stop at the end of each theorem and attempt to construct for
himself the relevant diagram before examining the one which is
given in the text. Once this is done, the subsequent demonstra-
tion can be followed more readily; in fact, the reader can usually
supply it himself.

I spent a lot of my time studying Category Theory trying to “supply
the diagrams myself”. In [ES52] supplying the diagrams is not very hard (I
guess), but in books like [CWM], in which most important concepts involve
several categories, I had to rearrange my diagrams hundreds of times until I
reached “good” diagrams...

The problem is that I expected too much from “good” diagrams. The
next quotes are from the sections 1 and 12 of an article that I wrote about
that ([IDARCT]):

My memory is limited, and not very dependable: I often have
to rededuce results to be sure of them, and I have to make them
fit in as little “mental space” as possible...

Different people have different measures for “mental space”;
someone with a good algebraic memory may feel that an expres-
sion like Frob : Σf (P ∧ f ∗Q) ∼= ΣfP ∧ Q is easy to remember,
while I always think diagramatically, and so what I do is that I
remember this diagram,

2020favorite-conventions July 24, 2021 20:23



CONTENTS 4

and I reconstruct the formula from it.
Let’s call the “projected” version of a mathematical object its

“skeleton”. The underlying idea in this paper is that for the right
kinds of projections, and for some kinds of mathetical objects, it
should be possible to reconstruct enough of the original object
from its skeleton and few extra clues — just like paleontologists
can reconstruct from a fossil skeleton the look of an animal when
it was alive.

I was searching for a diagrammatic language that would let me express
the “skeletons” of categorical definitions and proofs. I wanted these skeletons
to be easy to remember — partly because they would have shapes that were
easy to remember, and partly because they would be similar to “archetypal
cases” ([IDARCT, section 16]).

In 2016 and 2017 I taught a seminar course for undergraduates that cov-
ered a bit of Category Theory in the end — see Section 5.5 and [Och19]
— and this forced me to invent new techniques for working in two different
styles in parallel: a style “for adults”, more general, abstract, and formal,
and another “for children”, with more diagrams and examples. After some
semesters, and after writing most of the material that became [PH1], I tried
to read again some parts of Johnstone’s “Sketches of an Elephant”, a book
that always felt quite impenetrable to me, and I found a way to present geo-
metric morphisms in toposes to “children”. It was based on this diagram,

f ∗G Goo �f ∗G

H
��

G

f∗H
��

H f∗H
� //

oo //

E Foo f
∗

E F
f∗
//

(
G2 G3
↘ ↙ ↘
G4 G5

) 
G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6

oo �

(
G2 G3
↘ ↙ ↘
G4 G5

)

(
H2 H3
↘ ↙ ↘
H4 H5

)��


G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6




H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1



��

(
H2 H3
↘ ↙ ↘
H4 H5

) 
H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

A B
f //
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that we will discuss in detail in 7.13. Its left half is a generic geometric mor-
phism (“for adults”), and its right half is a very specific geometric morphism
(“for children”) in which everything is easy to understand and to visualize,
and that turns out to be “archetypal enough”.

I showed that to the few categorists with whom I had contact and the
feedback that I got was quite positive. A few of them — the ones who were
strictly “adults” — couldn’t understand why I was playing with particular
cases, and even worse, with finite categories, instead of proving things in the
most general case possible, but some others said that these ideas were very
nice, that they knew a few bits about geometric morphisms but those bits
didn’t connect well, and that now they had a family of particular cases to
think about, and they had much more intuition than before.

That was the first time that my way of using diagrams yielded some-
thing so nice! This was the excuse that I needed to organize a workshop
on diagrammatic languages and ways to use particular cases; here’s how I
advertised it (from [OL18]):

When we explain a theorem to children — in the strict sense
of the term — we focus on concrete examples, and we avoid
generalizations, abstract structures and infinite objects.

When we present something to “children”, in a wider sense of
the term that means “people without mathematical maturity”,
or even “people without expertise in a certain area”, we usually
do something similar: we start from a few motivating examples,
and then we generalize.

One of the aims of this workshop is to discuss techniques for
particularization and generalization. Particularization is easy;
substituing variables in a general statement is often enough to
do the job. Generalization is much harder, and one way to visu-
alize how it works is to regard particularization as a projection:
a coil projects a circle-like shadow on the ground, and we can
ask for ways to “lift” pieces of that circle to the coil continously.
Projections lose dimensions and may collapse things that were
originally different; liftings try to reconstruct the missing infor-
mation in a sensible way. There may be several different liftings
for a certain part of the circle, or none. Finding good generaliza-
tions is somehow like finding good liftings.

The second of our aims is to discuss diagrams. For example,
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in Category Theory statements, definitions and proofs can be
often expressed as diagrams, and if we start with a general dia-
gram and particularize it we get a second diagram with the same
shape as the first one, and that second diagram can be used as
a version “for children” of the general statement and proof. Di-
agrams were for a long time considered second-class entities in
CT literature ([Krö07] discusses some of the reasons), and were
omitted; readers who think very visually would feel that part of
the work involved in understanding CT papers and books would
be to reconstruct the “missing” diagrams from algebraic state-
ments. Particular cases, even when they were the motivation
for the general definition, are also treated as somewhat second-
class — and this inspires a possible meaning for what can call
“Category Theory for Children”: to start from the diagrams for
particular cases, and then “lift” them to the general case. Note
that this can be done outside Category Theory too; [Jam01] is a
good example.

Our third aim is to discuss models. A standard example is
that every topological space is a Heyting Algebra, and so a model
for Intuitionistic Predicate Logic, and this lets us explain visually
some features of IPL. Something similar can be done for some
modal and paraconsistent logics; we believe that the figures for
that should be considered more important, and be more well-
known.

This is from the second announcement:

If we say that categorical definitions are “for adults” - because
they may be very abstract - and that particular cases, diagrams,
and analogies are “for children”, then our intent with this work-
shop becomes easy to state. “Children” are willing to use “tools
for children” to do mathematics, even if they will have to trans-
late everything to a language “for adults” to make their results
dependable and publishable, and even if the bridge between their
tools “for children” and “for adults” is somewhat defective, i.e.,
if the translation only works on simple cases...

We are interested in that bridge between maths “for adults”
and “for children” in several areas. Maths “for children” are hard
to publish, even informally as notes (see this thread

2020favorite-conventions July 24, 2021 20:23



CONTENTS 7

http://angg.twu.net/categories-2017may02.html

in the Categories mailing list), so often techniques are rediscov-
ered over and over, but kept restricted to the “oral culture” of
the area.

Our main intents with this workshop are:

• to discuss (over coffe breaks!) the techniques of the “bridge”
that we currently use in seemingly ad-hoc ways,

• to systematize and “mechanize” these techniques to make
them quicker to apply,

• to find ways to publish those techniques — in journals or
elsewhere,

• to connect people in several areas working in related ideas,
and to create repositories of online resources.

In the UniLog 2018 I was able to chat with several categorists, and they
told me about the oral culture of CT and showed me that it was not as
I was guessing, and I also spent two evenings with Peter Arndt working
on factorizations of geometric morphisms “for children” — and this made
me feel that I could present applications of this diagrammatic language in
conferences that were more top-level-ish in some sense.

The following quote is from the abstract of my submission ([MDE]) to
the ACT2019:

Imagine two category theorists, Aleks and Bob, who both
think very visually and who have exactly the same background.
One day Aleks discovers a theorem, T1, and sends an e-mail,
E1, to Bob, stating and proving T1 in a purely algebraic way;
then Bob is able to reconstruct by himself Aleks’s diagrams for
T1 exactly as Aleks has thought them. We say that Bob has
reconstructed the missing diagrams in Aleks’s e-mail.

Now suppose that Carol has published a paper, P2, with a
theorem T2. Aleks and Bob both read her paper independently,
and both pretend that she thinks diagrammatically in the same
way as them. They both “reconstruct the missing diagrams” in
P2 in the same way, even though Carol has never used those
diagrams herself.
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http://angg.twu.net/categories-2017may02.html


CONTENTS 8

and this from my submission ([Och20]) to Diagrams 2020:

Category Theory gives the impression of being an area where
most concepts and arguments are stated and formalized via dia-
grams, but this is not exactly true... in most texts almost every-
thing is done algebraically, and the reader is expected to be able
to reconstruct the “missing diagrams” by himself.

I used to believe, as an outsider, that some people who grew
up immersed the oral culture of the area would know several tech-
niques for “drawing the missing diagrams”. My main intent when
I organized the workshop “Logic for Children” at the UniLog 2018
[OL18] was to collect some of these folklore techniques, compare
them with the ones that I had developed myself to study CT,
and formalize them all — but what I found instead was that ev-
erybody that I could get in touch with used their own ad-hoc
techniques, and that what I was trying to do was either totally
new to them, or at least new in its level of detail.

The story continues in the last three sections — that also explains why I
decided to write these notes using the first person in most places.

2 The conventions
The conventions that I will present now are the ones that we need for this

diagram (called the “Basic Example” from here on), that is essentially the
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Proposition 1 in the proof of the Yoneda Lemma in [CWM, Section III.2]:

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)
T
//
��

99

(CD) Our diagrams are made of components that are nodes and arrows. The
nodes can contain arbitrary expressions. The arrows work as connec-
tives, and each arrow can be interpreted as the top-level connective in
the smallest subexpression that contains it. For example, the curved
arrow in the diagram above can be interpreted as:

(A
η→ RC)↔ (B(C,−) T→ A(A,R−)).

(C→) Arrows that look like ‘→’ (“\to”) represent hom-sets, or, in Set, spaces
of functions. When a ‘→’ arrow is named the name stands for an
element of that hom-set. For example, in A

η→ RC we have η : A →
RC.

(C7→) Arrows that look like ‘ 7→’ (“\mapsto”) represent internal views of func-
tions or functors. This has some subtleties; see Section 5.

(C↔) Arrows that look like ‘↔’ (“\leftrightarrow”) represent bijections or
isomorphisms.

(CAI) “Above” usually means “inside”, or “internal view”. In the diagram
above the morphism η : A → RC is in A and C is an object of B.
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Also, the arrow C 7→ RC is above B
R→ A, and this means that it is

an internal view of the functor R. Note that usually is not always —
and B

R→ A is not an internal view of B(C,−) T→ A(A,R−).

(CO) When the definition of a component of our diagram is “obvious” in
the sense of “there is a unique natural construction for an object with
that name”, we will usually omit its definition and pretend that it is
obvious; same for its uniqueness. See Section 3.

(CC) Everything commutes by default, and non-commutative cells have to
be indicated explicitly. See Section 4.

(CTL) The default “meaning” for a diagram is the definition of its top-level
component. There is a natural partial order on the components of a
diagram, in which α ≺ β iff α is “more basic” than β, or, in other
words, if α needs to be defined before β. In the diagram above the
top-level component is the curved bijection.

(CAdj) I use shapes based on my way of drawing adjunctions whenever possi-
ble. I like adjunctions so much that when I want to explain Category
Theory to someone who knows just a little bit of Maths I always start
by the adjunction (×B) a (B→) of Section 5.4; I always draw it in
a canonical way, with the left adjoint going left, the right adjoint go-
ing right, and the morphisms going down. In Proposition 1 of [CWM,
Section III.2] the map η is a universal arrow, and someone who learns
adjunctions first sees the unit maps η : A → (B→(A×B)) as the first
examples of universal arrows — so that’s why the upper part of the
diagram above is drawn in this position.

(COT) We use a notation as close to the original text as possible, especially
when we are trying to draw the missing diagrams for some existing
text. If we were drawing the missing diagrams for the Proposition 1 of
[CWM, Section III.2] our diagram would be this:

c

Sr

u
��

r Sr� //

D C
S //

D(r,−) C(c, S−)ϕ
//
��

99
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but I hate Mac Lane’s choice of letters, so I decided to use another
notation here.

(CSk) Suppose that we have a piece of text — say, a paragraph P — and
we want to reconstruct the “missing diagram” D for P . Ideally this D
should be a “skeleton” for P , in the sense that it should be possible to
reconstruct the ideas in P from the diagram D using very few extra
hints; see [IDARCT, sec.12].

(CFSh) The image by a functor of a diagram D is drawn with the same shape
as D.

(CISh) The internal view of a diagram D is drawn with the same shape as D,
modulo duplications — see section 5.

(CPSh) A particular case of a diagram D is drawn with the same shape as D.

(CNSh) A translation of a diagram D to another notation is drawn with the
same shape as D.

Note that I have presented these conventions in a human-friendly way,
that is somewhat informal and admits exceptions and extensions. Some
simple examples of extensions will be discussed in Section 7.

See [Penrose] for a system that produces diagrams from conventions and
specifications and then lets the user adjust these generated diagrams to make
them clearer and more aesthetically pleasing — but as far as I know Penrose
can only produce diagrams, not read them.

3 Finding “the” object with a given name
One of the books that I tried to read when I was starting to learn Category

Theory was Mac Lane’s [CWM]. It is written for readers who know a lot of
mathematics and who can follow some steps that it treats as obvious. I was
not (yet) a reader like that, but I wanted to become one.

There is one specific thing that [CWM] does pretending that it is obvious
that I found especially fascinating. It “defines” functors by describing their
actions on objects, and it leaves to the reader the task of discovering their
actions on morphisms. Let’s see how to find these actions on morphisms.
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A functor F : A→ B has four components:

F = (F0, F1, respidsF , respcompF ).

They are its action on objects, its action on morphisms, the assurance that
it takes identity maps to identity maps, and the assurance that it respects
compositions. When Mac Lane says this,

Fix a set B. Let (×B) denote the functor that takes each set A
to A×B.

he is saying that (×B)0A = A×B, or, more precisely, this:

(×B)0 := λA.A×B

The “the” in the expression “Let (×B) denote the functor...” implies
that the precise meaning of (×B)1 is easy to find, and that it is easy to prove
respids(×B) and respcomp(×B).

If f : A′ → A then (×B)1f : (×B)0A
′ → (×B)0A. We know the name of

the image morphism, (×B)1f , and its type,

(×B)1f : A′ ×B → A×B,

and it is implicit that there is an “obvious” natural construction for this
(×B)1f from f . A natural construction is — TA-DAAAA!!! — a λ-term, so
we are looking for a term of type A′ × B → A× B that can be constructed
from f : A′ → A.

In a big diagram:

f : A′ → A

(×B)1f : A′×B → A×B ⇒

[p : A′×B]1

πp : A′ f : A′ → A

f(πp) : A

[p : A′×B]1

π′p : B

(f(πp), π′p) : A×B
(λp:A′×B.(f(πp), π′p) : A′×B → A×B 1

A double bar in a derivation means “there are several omitted steps here”,
and sometimes a double bar suggests that these omitted steps are obvious.
The derivation on the left says that there is an “obvious” way to build a
(×B)1f : A′×B → A×B from a “hypothesis” f : A′ → A. If we expand its
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double bar we get the tree at the right, that shows that the “precise meaning”
for (×B)1f is (λp:A′×B.(f(πp), π′p). More formally (and erasing a typing),

(×B)1 := λf.(λp.(f(πp), π′p)).

The expansion of the double bar above becomes something more familiar
if we translate the trees to Logic using Curry-Howard:

P → Q

P ∧R→ Q ∧R ⇒

[P ∧R]1

P P → Q

Q

[P ∧R]1

R

Q ∧R

P ∧R→ Q ∧R
1

We obtain the tree at the right by proof search.
Let’s give a name for the operation above that obtained a term of type

A′×B → A×B: we will call that operation term search, or, as it is somewhat
related to type inference, term inference.

Term search may yield several different construction and trees, and so
several non-equivalent terms of the desired type. When Mac Lane says “the
functor (×B)” he is indicating that:

• a term for (×B)1 is easy to find (note that we use the expression “a
precise meaning for (×B)1”),

• all other natural constructions for something that “deserves the name”
(×B)1 yield terms equivalent to that first, most obvious one,

• proving respids(×B) and respcomp(×B) is trivial.

In many situations we will start by just the name of a functor, as the
“(×B)” in the example above, and from that name it will be easy to find
the “precise meaning” for (×B)0, and from that the “precise meaning” for
(×B)1, and after that proofs that respids(×B) and respcomp(×B). We will use
the expression “...deserving the name...” in this process — terms for (×B)0,
(×B)1, respids(×B), and respcomp(×B) “deserve their names” if they obey the
expected constraints.

For a more thorough discussion see [IDARCT].
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Note: I am not aware of any papers or books that discuss how to (re)con-
struct a functor from its action on objects, or from its name. If you have any
references, please let me know!

These ideas of “finding a precise meaning” and “finding (something) de-
serving that name” can also be applied to morphisms, natural transforma-
tions, isomorphisms, and so on.

In Section 6.3 we will see how to find natural constructions for the two
directions of the bijection in the Basic Example — or how the expand the
double bars in the two derivations here:

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)
T
//
��

99 γ : A→ RC

T : B(C,−)→ A(A,R−)

T : B(C,−)→ A(A,R−)
γ : A→ RC

4 Freyd’s diagrammatic language
In [Freyd76] Peter Freyd presents a very nice diagrammatic language that

can be used to express some definitions from Category Theory. For example,
this is the statement that a category has all equalizers:

∀

A B
f //

A B
g
//?

∃

A B
f //

A B
g
//?E Ae

//

∀

A B
f //

A B
g
//?E Ae

//

X

A

h

��?
??

??
??

∃!

A B
f //

A B
g
//?E Ae

//

X

A

h

��?
??

??
??

X

E

k
��

All cells in these diagrams commute by default, and non-commuting cells
have to be indicated with a ‘?’. Each vertical bar with a ‘∀’ above it means
“for all extensions of the previous diagram to this one such that everything
commutes”; a vertical bar with a ‘∃!’ above it means “there exists a unique
extension of the previous diagram to this one such that everything com-
mutes”, and so on. See the scan in [Freyd76] for the basic details of how
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to formalize these diagrams, and the book [FS90, p.28 onwards], for tons of
extra details, examples, and applications.

Let’s call the subdiagrams of a diagram like the one above its “stages”.
Its stage 0 is empty, its stage 1 has two objects and two arrows, its last stage
has four objects and five arrows, and the quantifiers separating the stages
are Q1 = ∀, Q2 = ∃, Q3 = ∀, Q4 = ∃!. They are structured like this:

S0 S1 S2 S3 S4

Q1 Q2 Q3 Q4

I was not very good at drawing all stages separately — it was boring, it
took me too long, and I often got distracted and committed errors — so I
started to play with extensions of that diagrammatic language.

4.1 Adding quantifiers
Here is a simple way to draw all stages at once. We start from a diagram

for the “last stage with quantifiers”, that we will call LSQ:

∀1A ∀1B
∀1f //∀1A ∀1B
∀1g

//?∃2E ∀1A∃2e
//

∀3X

∀1A

∀3h

��?
??

??
??

??
??

∀3X

∃2E

∃!4k

��

We can recover all the stages and quantifiers from it. The numbered
quantifiers in it are ∀1, ∃2, ∀3, and ∃!4. The highest number in them 4, so
we set n = 4 (n is the index of the last stage), and we set “stage 4 with
quantifiers”, SQ4, to LSQ. To obtain the SQ3 from SQ4 we delete all nodes
an arrows in SQ4 that are annotated with a ‘∃!4’; to obtain SQ2 from SQ3
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we delete all nodes an arrows in SQ3 that are annotated with a ‘∀3’, and so
on until we get a diagram SQ0, that in this example is empty. To obtain each
Sk — a stage in the original diagrammatic language from Freyd, that doesn’t
have quantifiers — from the corresponding SQk we treat all the quantifiers
in SQk as mere annotations, and we erase them; for example, ‘∃2e’ becomes
‘e’, and ∀1A becomes A. To obtain the quantifiers Q1, Q2, Q3, Q4 that are
put in the vartical bars that separate the stages, we just assign ∀1, ∃2, ∀3,
and ∃!4 to them, without the numbers in the subscripts.

Bonus convention: when the quantifiers in a diagram are just ‘∀’s and
‘∃!’s without subscripts the ‘∀’s are to be interpreted as ‘∀1’ and the ‘∃!’s as
‘∃!2’s.

4.2 Adding functors
Freyd’s language can’t represent functors1, and I wanted to use it to draw

the missing diagrams for definitions involving functors, so I had to extend it
again.

Let me use an example to discuss this. This is the definition of universal
arrow in [CWM, p.55], including the original diagram, modulo change of
letters:

Definition. If R : B → A is a functor and A an object of
A, a universal arrow from A to R is a pair (B, η) consisting of
an object B of B and and arrow η : A → RB of A such that
to every pair (B′, g) with B′ an object of B and g : A → RB′

an arrow of A, there is a unique arrow f : B → B′ of B with
Rf ◦ η = g. In other words, every arrow h to R factors uniquely
through the universal arrow η, as in the commutative diagram:

A RB
η //

=

RB

RB′,

Rf

��

B

B′.

f

��
A RB′,

g //

The definition itself goes only up to the “with Rf ◦ η = g.”, so let me
ignore the part starting from “In other words”, and draw a better “missing

1As far as I know — I don’t know [FS90] very well.
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diagram” for the definition:

A

RB

η
��

B RB� //

B AR //

∀
A

RB

η
��

B RB� //

B′ RB′� //

A

RB′

g

��

B AR //

∃!
A

RB

η
��

B RB� //B

B′

f
��

RB

RB′

Rf
��

� //

B′ RB′� //

A

RB′

g

��

B AR //

This diagram is quite close to being a skeleton for the definition of uni-
versal arrow. It can be interpreted as a proposition, and the only extra hint
that we need is that “universalness” for the arrow η corresponds to the truth
of that proposition. Here’s how to extract the proposition from it:

In a context where: A is a category,
B is a category,
R : B→ A,
A ∈ A,
B ∈ B,
η : A→ RB,

for all B′ ∈ B and
g : A→ RB′,

there exists a unique f : B → B′ such that
Rf ◦ η = g.

To convert that to a definition of universalness we just have to replace
the “for all” by “(B, η) is a universal arrow for A to R iff for all”.

The convention for quantifiers from sec.4.1 lets us rewrite the diagram in
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three stages above as:

A

RB

η
��

B RB� //B

∀B′

∃!f
��

RB

RB′

Rf
��

� //

∀B′ RB′� //

A

RB′

∀g

��

B AR //

Also, I noticed that I could omit most typings when they could be inferred
from the diagram. I could “formalize” the diagram above as: “in a context
where (A,B, R,A,B, η) are as in the diagram above, we say that (B, η) is a
universal arrow from A to R when ∀(B′, g).∃!f.(Rf ◦ η = g)”. This may be
too loaded to be used in public, but it’s very practical for private notes —
and I can even omit the “Rf ◦ η = g”, as everything commutes by default.

Note that when we erase a node or arrow we also erase everything that
depends on it. In the example above SQ2 has an arrow labeled ∃!2f ; to
obtain SQ1 from SQ2 we have to erase that arrow, the arrow Rf , and the
arrow f 7→ Rf — and to obtain SQ0 from SQ1 we have to erase the arrow
g, the node B′, the node RB′, and the arrow B′ 7→ RB′.
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5 Internal views
My favorite way of introducing internal views is with the diagram below:

√
: N → R

n 7→
√
n

−1
0 0� //

1 1� //

2
√
2� //

3
√
3� //

4 2� //

n
√
n� //

N R
√

//

The parts with the two blobs and ‘ � // ’s between them is based on how I
was taught sets and functions when I was a kid; it is an internal view of the
N

√
→ R below it. Not all elements of N are shown in the blob-view of N, but

the ones that are shown are named; compare this with [LR03, p.2 onwards],
in which the elements are usually dots.

The arrow n � //
√
n between the blobs shows a generic element of N and

its image, and the other ‘ � // ’s are substitution instances of it, like this:

(n � //
√
n)[n := 2] = (2 � //

√
2)

In some cases, like 4 � // 2, we write 2 instead of
√
4 because

√
4 “reduces

to” 2, as explained in the next section.

5.1 Reductions
The convention (C 7→) says that an arrow α 7→ β above an arrow A

f→ B
should be interpreted as meaning f(α) β, where ‘ ’ means “reduces to”;
the standard example is

√
4 2. In a diagram:

4 2� //

n
√
n� //

N R
√
//

√
4 2

α β� //

A B
f //

f(α) β
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The idea of reduction comes from λ-calculus. We write α
1
 β to say that

the term α reduces to β in one step, and α
∗
 γ to say that there is a finite

sequence of one-step reductions that reduce α to γ. Here we are interested
in reduction in a system with constants, in which for example (

√
)(4)

1
 2.

Here is a directed graph that shows all the one-step reductions starting
from g(2 + 3), considering g(a) = a · a+ 4:

g(2 + 3) g(5)//

(2 + 3) · (2 + 3) + 4

(2 + 3) · 5 + 4
$$JJ

JJJ
JJ

(2 + 3) · 5 + 4

5 · 5 + 4
$$J

JJ
JJ

JJ

5 · (2 + 3) + 4 5 · 5 + 4//

g(2 + 3)

(2 + 3) · (2 + 3) + 4
��

(2 + 3) · (2 + 3) + 4

5 · (2 + 3) + 4
��

g(5)

5 · 5 + 4
��

5 · 5 + 4 25 + 4// 25 + 4 29//

Note that all reductions sequences starting from g(2 + 3) terminate at
the same term, 29 — “the term g(2 + 3) is strongly normalizing” —, and
reduction sequences from g(2 + 3) may “diverge” but they “converge” later
— this is the “Church-Rosser Property”, a.k.a. “confluence”.

A good place to learn about reduction in systems with constants is [SICP].

5.2 Functors
By the convention (CFSh) the image of the diagram above A in the

diagram below — remember that above usually means inside —

A1

A2

f
��

A2

A3
goo
77oo A3

A4

h
��

A1

A3

k
''OO

OO

A2

A4
m ''OO
OO

A BF //
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is a diagram with the same shape over B. We draw it like this:

A1

A2

f
��

A2

A3
goo
77oo A3

A4

h
��

A1

A3

k
''OO

OO

A2

A4
m ''OO
OO

A BF //

FA1

FA2

Ff
��

FA2

FA3
Fgjj
55jj FA3

FA4

Fh
��

FA1

FA3

Fk
))TTT

TT

FA2

FA4
Fm

))TTT
TT

In this case we don’t draw the arrows like A1 7→ FA1 because there would
be too many of them — we leave them implicit.

We say that the diagram above is an internal view of the functor F . To
draw the internal view of the functor F : A → B we start with a diagram
in A that is made of two generic objects and a generic morphism between
them. We get this:

C FC� //C

D

g
��

FC

FD

Fg
��

D FD� //

� //

A BF //

Compare this with the diagram with blob-sets in Section 5, in which the
‘n 7→

√
n’ says where a generic element is taken.

Any arrow of the form α 7→ β above a functor arrow A
F→ B is interpreted

as saying that F takes α to β, or, in the terminology of the section 5.1, that
Fα reduces to β. So this diagram

B A×B� //B

C

f
��

A×B

A×C
λp.(πp,f(π′p))
��

C A×C� //

� //

Set Set
(A×) //

defines (A×) as:
(A×)0 := λB.A×B,
(A×)1 := λf.λp.(πp, f(π′p)).
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In this case we can also use internal views of (A×) to define (A×)1:

B A×B� //B

C

f
��

A×B

A×C
(A×)f
��

C A×C� //

� //

Set Set
(A×) //

(a, b)

(a, f(b))

_

��

p

(πp, f(π′p))

_

��

5.3 Natural transformations
Suppose that we have two functors F,G : A→ B and a natural transfor-

mation T : F → G. A first way to draw an internal view of T is this:

C

FC
,

55llllll
C

GC

�
))RRR

RRR

FC

GC

TC
��

C � //

A B
F //A B
G
//

If we start with a morphism h : C → D in A, like this,

C

D

h
��

A B
F //A B
G
//

the convention (CFSh) would yield an image of h by F and another by G,
and we can draw the arrows TC and TD to obtain a commuting square in
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B:
C

FC

�
##G

GGG
GC

GC

�

**UUU
UUUU

UUUU
UUUU

D

FD

�
##G

GGG
GD

GD

�

**UUU
UUUU

UUUU
UUUU

C

D

h

��

FC GC
TC

//FC

FD

Fh

��

GC

GD

Gh

��
FD GD

TD
//

F GT //

A B
F //A B
G

//

This way of drawing internal views of natural transformations yields di-
agrams that are too heavy, so we will usually draw them as just this:

C

D

h

��

FC GCTC //FC

FD

Fh

��

GC

GD

Gh

��
FD GD

TD
//

F G
T //

Note that the input morphism is at the left, and above F
T→ G we draw its

images by F , G, and T .
When the codomain of F and G is Set we will sometimes also draw at

the right an internal view of the commuting square, like this:

C

D

h

��

FC GCTC //FC

FD

Fh

��

GC

GD

Gh

��
FD GDTD //

F GT //

x (TC)(x)� // (TC)(x)

(Gh ◦ TC)(x)

_

��

x

(Fh)(x)

_

��
(Fh)(x) (TD ◦ Ff)(x)� //

Then the commutativity of the middle square is equivalent to ∀x ∈ FC.(Gh◦
TC)(x) = (TD ◦Ff)(x). Note that in this case the square at the right is an
internal view of an internal view.
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In Section 3 we saw that a functor has four components. A natural
transformation has two: T = (T0, sqcondT ), where T0 is the operation C 7→
TC and sqcondT is the guarantee that all the induced squares commute.
Sometimes we will use the upper line of the internal view of the internal view
to define T0 — see Section 6.2 for an example of this.

5.4 Adjunctions
We will draw adjunctions like this,

LA Aoo �

B RB� //

oo //

LA

B
��

A

RB
��

B Aoo L
B A

R
//

with the left adjoint going left and the right adjoint going right. My favorite
names for the left and right adjoints are L and R. The standard notation for
that adjunction is L a R.

The top-level component of the diagram above is the bijection arrow in
the middle of the square — it says that Hom(LA,B) ↔ Hom(A,RB). It is
implicit that we have bijections like that for all A and B; it is also implicit
that that bijection is natural in some sense.

We will sometimes expand adjunction diagrams by adding unit and counit
maps, the unit and the unit as natural transformations, the actions of L and
R on morphisms, and other things. For example:

LR

idB

ε
��

LRB

B

εB
��

LA′ A′oo �LA′

LA

Lf
��

A′

A

f
��

oo �

LA Aoo �LA

B

h[

g ��

A

RB

h
g]��

oo �� //

B RB� //B

B′

k
��

RB

RB′

Rk
��

B′ RB′� //

� //

A

RLA

ηA
��

idA

LR

η
��

B Aoo LB A
R
//
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We can obtain the naturality conditions by regarding [ and ] as natural
transformations and drawing the internal views of their internal views:

(A,B)

(A′, B′)

(fop,g)

��

Hom(LA,B) Hom(A,RB)ooHom(LA,B)

Hom(LA′, B′)
��

Hom(A,RB)

Hom(A,RB)
��

Hom(LA′, B′) Hom(A,RB)oo

Hom(L−,−) Hom(−, R−)oo [

h[ hoo �h[

k ◦ h[ ◦ Lf

_

��

h

Rk ◦ h ◦ f

_

��
(Rk ◦ h ◦ f)[ Rk ◦ h ◦ foo �

(A,B)

(A′, B′)

(fop,g)

��

Hom(LA,B) Hom(A,RB)//Hom(LA,B)

Hom(LA′, B′)
��

Hom(A,RB)

Hom(A,RB)
��

Hom(LA′, B′) Hom(A,RB)//

Hom(L−,−) Hom(−, R−)] //

g g]� // g]

Rk ◦ g] ◦ f

_
��

g

k ◦ g ◦ Lf

_

��
k ◦ g ◦ Lf (k ◦ g ◦ Lf)]� //

5.5 A way to teach adjunctions
I mentioned in the first sections that I have tested some parts of this

language in a seminar course — described here: [Och19] — and that in it I
teach Categories starting by adjunctions. Here’s how: we start by the basics
of λ-calculus and some sections of [PH1], and then I ask the students to
define each one of the operations in the right half of the diagram below as
λ-terms:

LA′ A′oo �

LA Aoo �

B RB� //

B′ RB′� //

oo �

oo �� //

� //

LA′

LA
��

A′

A
��

LA

B
��

A

RB
��

B

B′
��

RB

RB′
��

B Aoo L
B A

R
//

LRB

B
��

A

RLA
��

A×C Aoo �

B×C Boo �

D (C→D)� //

E (C→E)� //

oo �

oo �� //

� //

A×C

B×C
��

A

B
��

B×C

D
��

B

(C→D)
��

D

E
��

(C→D)

(C→E)
��

Set Setoo(×C)

Set Set
(C→)

//

(C→D)×C

D
��

B

(C→(B×C))
��
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Then we see the definition of functors, natural transformations and ad-
junctions, and we check that the right half is a particular case of the diagram
for a generic adjunction in the left half. After that, and after also check-
ing that in the Planar Heyting Algebras of [PH1] we have an adjunction
(∧Q) a (Q →), I help the students to decypher some excerpts of standard
texts on CT — in the last time that I gave the course we used [Awo06], but
I am planning to use [CWM] the next time.

From the components of the generic adjunction in the diagram above it
is possible to build this big diagram:

LA′ A′oo �LA′

LA

Lf

��

A′

A

f
��
A

RLA

ηA
��

A′

RLA
��

oo �

LA RLAoo �

LA Aoo �LA

LRB

Lh
��

A

RB

h
��

oo �

LRB RBoo �LRB

B

εB
��

LA

B

g

��

LRB

B

εB
��

LA′ A′oo �LA′

LA

Lf
��

A′

A

f
��

oo �

LA Aoo �LA

B

h[

g ��

A

RB

h
g]��

oo �� //

B RB� //B

B′

k
��

RB

RB′

Rk
��

B′ RB′� //

� //

A

RLA

ηA
��

A

RLA

ηA
��

LA RLA� //LA

B

g
��

RLA

RB

Rg
��

B RB� //

� //

A

RB

h

��

LRB RB� //LRB

B

ηB
��
B

B′

k
��

LRB

B′
��

RB

RB′

Rk

��
B′ RB′� //

� //

B Aoo LB A
R
//
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Let’s use these names for its subdiagrams:
A

BCDEF
G
I

.
A fully-specified adjunction between categories B and A has lots of com-

ponents: (L,R, ε, η, [, ], univ(ε), univ(η)), and maybe even others, but usually
we define only some of these components; there is a Big Theorem About Ad-
junctions (below!) that says how to reconstruct the fully-specified adjunction
from some of its components.

Some parts of the diagram above can be interpreted as definitions, like
these:

Lf := (ηA ◦ f)[

g := εB ◦ Lh εB := (idRB)
[ ηA := (idLA)

] h := Rg ◦ ηA
Rk := (k ◦ ηB)]

The subdiagrams B and F can also be interpreted in the opposite direc-
tion, as:

g] := (∀A.∀g.∃!h)Ag h[ := (∀B.∀h.∃!g)Bh
= (univεB)Ag = (univηA)Bh

The notations (∀A.∀g.∃!h)Ag and (univεB)Ag are clearly abuses of lan-
guage — but it’s not hard to translate them to something formal, and they
inspire great discussions in the classroom... also, they can help us to under-
stand and formalize constructions like this one,

Lf := (univηA)(LA)(ηA ◦ f)

A′

RLA′

ηA′
univ
��

LA′ RLA′� // A

RLA

ηA
univ
��

LA RLA� //

A′

A

f

��?
??

??
??

??

LA′

LA

Lf
��?

??
??

??
??

RLA′

RLA

RLf

??
?

��?
??

� //

B A
R
//

that are needed in cases like the part (ii) of the Big Theorem.
The Big Theorem About Adjunctions is this — it’s the Theorem 2 in

[CWM, page 83], but with letters changed to match the ones we are using in
our diagrams:
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Big Theorem About Adjunctions. Each adjunction 〈L,R, ]〉 :
A ⇀ B is completely determined by the items in any one of the
following lists:

(i) Functors L, R, and a natural transformation η : idA → RL
such that each ηA : A→ RLA is universal to R from A. Then ]
is defined by (6).

(ii) The functor R : B → A and for each A ∈ A an object
L0A ∈ B and a universal arrow ηA : A → RL0A from A to
R. Then the functor L has object function L0 and is defined on
arrows f : A′ → A by RLf ◦ ηA′ = ηA ◦ f .

(iii) Functors L, R, and a natural transformation ε : LR →
idB such that each εB : LRB → B is universal from L to B. Here
[ is defined by (7).

(iv) The functor L : A → B and for each B ∈ B an object
R0B ∈ A and an arrow εB : LR0B → B universal from L to B.

(v) Functors L, R and natural transformations η : idA → RL
and ε : LR→ idB such that both composites (8) are the identity
transformations. Here ] is defined by (6) and [ by (7).

My plan for the next incarnation of the course is to ask the students to
1) visualize in the big diagram all the objects and constructions in the Big
Theorem, 2) take the original Theorem 2 in [CWM] and draw the missing
diagrams for it, 3) decypher some other parts of the section about adjunctions
in [CWM].
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6 The Basic Example as a skeleton
In the sections 2 and 3 I claimed that the diagram of the Basic Example

is a “skeleton” of a certain theorem, in the sense that both the statement
and the proof of that theorem can be reconstructed from just the diagram
and very few extra hints. Let’s see the details of this.

6.1 Reconstructing its functors
Let’s call this diagram — the diagram of the Basic Example — Y0:

Y0 :=

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)
T
//
��

99

We don’t know yet the precise meaning of the functors B(C,−) and
A(A,R−), but if we enlarge Y0 to

Y0+ :=

A

RC

η
��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //D

E

g
��

RD

RE

Rg
��

� //

E RE� //

A

RD

h

��

B AR //

B(C,−) A(A,R−)
T
//

and we draw the internal views of B(C,−) and A(A,R−) then the meanings
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for B(C,−) and A(A,R−) become obvious:

D B(C,D)� //D

E

g
��

B(C,D)

B(C,E)

B(C,g)
��

E B(C,E)� //

B Set
B(C,−) //

f

g ◦ f

_

��

D A(A,RD)� //D

E

g
��

A(A,RD)

A(A,RE)

A(A,Rg)
��

E A(A,RE)� //

B Set
A(A,R−) //

h

Rg ◦ h

_

��

So:
B(C,−) : B→ Set
B(C,−)0 := λD.B(C,D)
B(C,−)1 := λg.λf.g ◦ f
A(A,R−) : B→ Set
A(A,R−)0 := λD.A(A,RD)
A(A,R−)1 := λg.λh.Rg ◦ h

6.2 Reconstructing its natural transformation
We also don’t know — yet — what is the natural transformation

B(C,−) T→ A(A,R−).

Its internal view is this:

D

E

g

��

B(C,D) A(A,RD)TD //B(C,D)

B(C,E)

B(C,g)

��

A(A,RD)

A(A,RE)

A(A,Rg)

��
B(C,E) A(A,RE)TE //

B(C,−) A(A,R−)T //

f

g ◦ f

_

��

h

Rg ◦ h

_

��

Note that we only drew the vertical arrows of the internal view of the internal
view.

If we have an arrow η : A→ RC then we have a natural construction for
T0: TD(f) := Rf ◦ η, and we can redraw the internal view of the internal
view as:

f Rf ◦ η� //f

g ◦ f

_

��

Rf ◦ η

Rg ◦ (Rf ◦ η)

_

��

g ◦ f R(g ◦ f) ◦ η� //

h

Rg ◦ h

_

��
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The square condition clearly holds, because:

Rg ◦ (Rf ◦ η) = (Rg ◦Rf) ◦ η
= R(g ◦ f) ◦ η.

So
T0 := λD.λf.Rf ◦ η.

6.3 Reconstructing its bijection
We can give names like ‘d’ and ‘u’ for the two components of the curved

bijection, like this:

Hom(A,RC)

Hom(B(C,−),A(A,R−))
d
��

Hom(A,RC)

Hom(B(C,−),A(A,R−))

OO
u

η

T

_

��

η

T

OO

_

η

d(η)

_

��

u(T )

T

OO

_

η

Tη

_

��

ηT

T

OO

_

but the notation at the right will be clearer.
We just saw how the direction ‘d’ of the bijection works:

(Tη)0 := λD.λf.Rf ◦ η.

Here’s how to find a natural construction for u. Suppose that we have a
natural transformation T . Then TC(idC) is an element of A(A,RC):

C B(C,C) A(A,RC)TC //

B(C,−) A(A,R−)T //

idC TC(idC)
� //

We can define:
ηT := TC(idC).

Now we need to check that d and u are mutually inverse, or, in the other
notation, that the round trips η 7→ Tη 7→ η(Tη) and T 7→ ηT 7→ T(ηT ) are
identity maps. Here is a good way to draw the round trips:

η

Tη

_

��

η(Tη)

Tη

OO

_

ηT

T(ηT )

_

��

ηT

T

OO

_
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Checking that η 7→ Tη 7→ η(Tη) yields back the original η is easy — we
just have to start with η(Tη) and reduce it as most as we can:

η(Tη) = TηC(idC)
= (λD.λg.(Rg ◦ η))C(idC)
= (λg.(Rg ◦ η))(idC)
= R(idC) ◦ η
= idRC ◦ η
= η

Checking that the other round trip, T 7→ ηT 7→ T(ηT ), yields back the
original T is not trivial. In the terminology of the convention (CSk) from
Section 2, to reconstruct that proof we need an extra hint: that at some
point in the proof we will have to use that the original T obeys sqcondT , and
that we will have to “evaluate” sqcondT on these inputs:

C

D

f
��

· ·T //

idC

This yields:

C

D

f

��

B(C,C) A(A,RC)TC //B(C,C)

B(C,D)

B(C,f)

��

A(A,RC)

A(A,RD)

A(A,Rf)

��
B(C,D) A(A,RD)TD //

B(C,−) A(A,R−)T //

idC TC(idC)
� // TC(idC)

Rf ◦ (TC(idC))

_
��

idC

f ◦ idC

_

��
f ◦ idC ff TD(f)� //

so Rf ◦ (TC(idC)) = TD(f).
We want to check that for all D and f we have T(ηT )D(f) = TD(f). We

have:
T(ηT )D(f) = (λD.λf.Rf ◦ ηT )D(f)

= (λf.Rf ◦ ηT )(f)
= Rf ◦ ηT
= Rf ◦ (TC(idC))
= TD(f).
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It works! So we have a natural construction for the bijection T ↔ η,
given by:

T0 := λD.λf.Rf ◦ η
η := TC(idC)

6.4 The full reconstruction
We have just reconstructed all the typings and definitions for the diagram

Y0. Here is the full reconstruction, except for the “proof terms” like respids,
assoc, idL and idR for each functor, sqcond for each natural transformations,
and the proofs that both round trips in the bijections are identity maps:

A

RC

η
��

C RC� //

B AR //

B(C,−) A(A,R−)
T
//
��

99

A is a category,
B is a category,
R : B→ A,
A ∈ A,
C ∈ B,
η : A→ RD,

B(C,−) : B→ Set,
B(C,−)0 := λD.B(C,D),
B(C,−)1 := λg.λf.g ◦ f,
A(A,R−) : A→ Set,
A(A,R−)0 := λD.A(A,RD),
A(A,R−)1 := λg.λh.Rg ◦ h,
T : B(C,−)→ A(A,R−),
T0 := λD.λf.Rf ◦ η,
η := TC(idC).

It shouldn’t be hard — for someone with practice — to translate the types
and definitions at the right above to the language of some proof assistant. I
tried to do this in Idris ([Bra17]) using [IdrisCT] but I didn’t go very far... I
implemented the protocategories, protofunctors and proto-NTs of [IDARCT,
section 19] to be able to skip the proof terms on my first prototypes, but I
got stuck trying to implement the formalization of Y0 as a single datatype...

(Help would be greatly appreciated!...)

2020favorite-conventions July 24, 2021 20:23



CONTENTS 34

7 Extensions to the diagrammatic language
Our diagrammatic language and the list of conventions in Section 2 can

be extended — “by the user” — in zillions of ways. Let’s see some examples
of extensions.

7.1 A way to define new categories
We saw in the sections 5.2 and 6.1 how to use diagrams to define functors,

and in sections 5.3 and 6.2 how to define natural transformations. We can
define new categories by diagrams, too.

A

RC

η
��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //

A

RD

g

��

B AR //

 A

RC

η
��

C RC� //


 A

RD

g
��

D RD� //


f ��

(A↓R)

(C, η)

(D, g)

f
��

(A↓R)

My favorite way — a syntax sugar! — of visualizing the comma category
(A↓R) is the middle third of the diagram above, in which the objects of
(A↓R) are depicted as L-shaped diagrams. To understand the typings and
the commutativity conditions we have to look at the left third — it indicates
that f must obey Rf ◦ η = g. The right third shows a generic morphism in
(A↓R) without the syntax sugar, but we still have to look at the left third
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to type it. We have:

In a context in which A is a category,
B is a category,
R : B→ A,
A is an object of A,

we define the category (A↓R) as follows:
An object of (A↓R)

is a pair (C, η)
in which C : B0

and η : HomA(A,RC);
so (C, η) : ΣC:B0.HomA(A,RC)

and (A↓R)0 := ΣC:B0.HomA(A,RC).

A morphism f : (C, η)→ (D, g) in (A↓R)
is an f : HomB(C,D) such that Rf ◦ η = g,

or equivalently a pair (f, 〈〈Rf ◦ η = g〉〉);
we have (f, 〈〈Rf ◦ η = g〉〉) : Σf : HomB(C,D).JRf ◦ η = gK,

so Hom(A↓R)((C, η), (D, g)) :=
Σf : HomB(C,D).JRf ◦ η = gK.

The notations 〈〈P 〉〉 and JP K are non-standard. For any proposition P we
denote by JP K the set of witnesses of P (see [HOTT, p.18]) and by 〈〈P 〉〉 a
witness that P is true; formally, 〈〈P 〉〉 is a variable (with a long name!) whose
type is JP K, and JP K is a singleton when P is true and the empty set when
P is false. A good way to remember this notation is that JP K looks like a
box and 〈〈P 〉〉 looks like something that comes in that box.

This defines formally the first two components of the category (A↓R).
Remember that a category C has seven components:

C = (C0,HomC, idC, ◦C; assocC, idLC, idRC)

We are pretending that the other components of (A↓R) are “obvious” in the
sense of Section 3.

7.2 The Yoneda Lemma
The formalization of Y0 as a series of typings and definitions in Section 6.4

suggests that some operations from Type Theory that can be applied on the
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formalization side should be translatable to the diagram side; for example,
substitution. This one clearly works: if we substitute A by Set and A by
the set 1 we get this,

Y0

[
A := Set
A := 1

]
=

1

RC

η
��

C RC� //

B SetR //

B(C,−) Set(1, R−)
T
//
��

99

For each D ∈ B we have a bijection Set(1, RD) ↔ RD — and we can
use these bijections to build a natural isomorphism Set(1, R−) ↔ R, that
we will add to the diagram:

Y1 :=

1

RC

η
��

C RC� //

B SetR //

B(C,−) Set(1, R−)
T
//B(C,−)

R
T ′ ''OO

OOO
OOO

OOO
Set(1, R−)

R

OO

��

��

99

We can obtain T ′ from T and vice-versa by composing them with Set(1, R−)↔
R.

The diagram Y1 “is” the Yoneda Lemma — but it doesn’t have a single
top-level arrow, so we can’t apply the convention (CTL) to it, and we need
to specify its “meaning” explicitly. The statement of the Yoneda Lemma is
that there is a bijection

RC ↔ Hom(B(C,−), R);

Once we know that it is easy to see that the diagram Y1 shows how we can
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build it by combining three bijections that we understand well:

RC
↔ Hom(1, RC)
↔ Hom(B(C,−),Set(1, R−))
↔ Hom(B(C,−), R)

So Y1 shows a way to build the bijection RC ↔ Hom(B(C,−), R).

7.3 The Yoneda embedding
Let B be an object of B. If we replace the functor R : B→ Set in Y1 by

B(B,−) and do some other renamings we get this:

Y1


R := B(B,−)

η := pfq
T := T ′

T ′ := T

 :=

1

B(B,C)

pfq
��

C B(B,C)� //

B Set
Hom(B,−) //

B(C,−) Set(1,B(B,−))
T ′

//B(C,−)

B(B,−)
T **UUU

UUUU
UUUU

UUUU
Set(1,B(B,−))

B(B,−)

OO

��





00

We can consider that the diagram above is a skeleton for the proof that
there is a bijection between arrows f : B → C and natural transformations
T : B(C,−) → B(B,−). The two directions of the bijection are easy to
define, as T0 := λD.λg.g ◦ f and f := TC(idC), but the proof that the round
trips f 7→ T 7→ f and T 7→ f 7→ T give back the original f and T are tricky,
as we saw in Section 6.3.

Usually people draw a simple diagram that just states that the obvious
map B(B,C)→ Hom(B(C,−),B(B,−) is a bijection, somehow like this:

B B(B,−)� //B

C
��

B(B,−)

B(C,−)

OO

C B(C,−)� //

oo //
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Compare with [Riehl, p.60]; note that our arrow in the middle of the square
is a ‘↔’.

We can draw it with more details as:

B B(B,−)� //B

C

f
TC(idC)

��

B(B,−)

B(C,−)

OO
λg.g◦f
T

C B(C,−)� //

� //oo �

B
Bop Set

y //

g ◦ f

g

OO

_

Note that it defines a contravariant functor y : Bop → Set whose action on
objects is C 7→ B(C,−).

We consider that the morphism f : B → C in the diagram is inside B,
not inside Bop. This is explained in the next section.

7.4 Opposite categories

Suppose that we have a diagram A
f→ B

g→ C in a category A. There
are several different notations for the corresponding diagram in Aop: for
example, in [CWM, p.33] it would be written as A

fop

← B
gop← C, while in

[AT11, p.15] as A
f← B

g← C. The convention (COT) says that the notation
in our diagrams should be as close as possible to the notation in the original
text — so let’s see how to support the notation in [AT11], that looks a bit
harder than the one in [CWM].

We want to define a new category, Aop, using tricks similar to the ones in
Section 7.1, but now we can’t pretend that the new composition is obvious.
We will define (Aop)0, HomAop , idAop , and ◦Aop without any textual expla-
nations, with just the diagrams to convince the readed that our definitions
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are reasonable.

A

A

B

f��

A

A

idA��

A

B

f��
B

C

g
��

A

C

g◦f

��

A

A

A

B

OO
f

A

A

OO
idA

A

B

OO
f

B

C

OO
g

A

C

OO

f◦g

Aop

A0 =: (Aop)0

HomA(A,B) =: HomAop(B,A)

idA(A) =: idAop(A)

g ◦A f =: f ◦Aop g

In the diagram below F : Aop → B is a contravariant functor, and the A
above Aop indicates that g : C → D is a morphism of A, not of Aop. I am
not very happy with this trick but I haven’t found a better alternative yet.

C FC� //C

D

g
��

FC

FD

OO
Fg

D FD� //

� //

A
Aop BF //

7.5 Universalness as something extra
We can consider that an universal arrow is an arrow η : A → RC with

an extra property; I showed at the end of Section 4.2 how to think of that
property as being just ∀D.∀g.∃!f , and how to treat that as an abbreviation
for something bigger and more formal.

We can also treat a universal arrow as an arrow η : A → RC plus extra
structure — this extra structure is an operation that returns for each D an
inverse for the operation g 7→ Rg ◦ η. For more on properties and structure,
see [BS07, p.15].
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In any case this “universalness” can be treated as something extra, and
a universal arrow can be expressed as:

(η, univη)

using dependent types.
Several of these “-ness”es have standard graphical representations: for

example pullbackness is indicated by a ‘ ’, and monicness is indicated by
a tail like this: ‘�’. [FS90] defines lots of graphical representations for “-
ness”es starting on its page 37. We will use an ‘:=’ to define a new annotation
that is an abbreviation for extra structure:

A

RC

η
univ��

C RC� //

B AR //

A

RC

η
��

C RC� //C

D

∃!f
��

RC

RD

Rf
��

D RD� //

A

RD

∀g

��

B AR //

� //:=

This is pullbackness:

A B//A

C
��

B

D
��

C D//

:=
A B//A

C
��

B

D
��

C D//

∀X

A

∃!
???

��??
?

∀X

C

∀

��/
//
//
//
//
//
//

∀X

B

∀

''OO
OOO

OOO
OOO

O

7.6 Representable functors
It is easy to see that in Y0 the universality of η is equivalent to the natural-

iso-ness of T ; in Y1 the universality of η is equivalent to the natural-iso-ness
of T , and this is equivalent to the natural-iso-ness of T ′. The constructions
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should be evident from these diagrams:

A

RC

η
univ��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //

A

RD

h

��

B AR //

B(C,−) A(A,R−)oo
T
//
��

@@

1

RC

η
univ��

C RC� //C

D

f
��

RC

RD

Rf
��

� //

D RD� //

1

RD

h

��

B SetR //

B(C,−) Set(1, R−)oo
T
//B(C,−)

R

gg

T ′ ''OO
OOO

OOO
OOO

Set(1, R−)

R

OO

��

��

@@

The diagram at the right above can be seen as the missing diagram for
Proposition 2 in [CWM, p.60], that says this (I’ve translated its letters to
the ones I use):

Definition. Let B have small hom-sets. A representation of
a functor R : B → Set is a pair 〈C, T ′〉, with C an object of B
and

T ′ : B(C,−)→ R

a natural isomorphism. The object C is called the representing
object. The functor R is said to be representable when such a
representation exists.

Up to isomorphism, a representable functor is thus just a
covariant hom-functor B(C,−). This notion can be related to
universal arrows as follows.

Proposition 2. Let 1 denote any one-point set and let B
have small hom-sets. If 〈C, η : 1 → RC〉 is a universal arrow
from 1 to R : B → Set, then the function T ′ which for each
object D of B sends the arrow f : C → D to (Rf)(η(∗)) ∈ RD
is a representation of R. Every representation of R is obtained
in this way from exactly one such universal arrow.
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The operations T ′ 7→ η and η 7→ T ′ can be defined as:

η : 1→ RC
T ′ : B(C,−)→ R
η := λ ∗ .(T ′C(id(C)))
T ′ := λD.λf.(Rf)(η(∗))

7.7 An example of a representable functor
Emily Riehl gives two pages of examples of representable functors in

[Riehl, pages 51–53]. Her example (iv) is:

(iv) The functor U : Ring → Set is represented by the
unital ring Z[x], the polynomial ring in one variable with
integer coefficients. A unital ring homomorphism Z[x]→ R
is uniquely determined by the image of x; put another way,
Z[x] is the free unital ring on a single generator.

She develops more this example in page 63, as:

Example 2.3.4. Recall from Example 2.1.5(iv) that the for-
getful functor U : Ring → Set is represented by the ring Z[x].
The universal element, which defines the natural isomorphism

Ring(Z[x], R) ∼= UR,

is the element x ∈ Z[x]. As in the proof of the Yoneda lemma,
the bijection above is implemented by evaluating a ring homo-
morphism φ : Z[x] → R at the element x ∈ Z[x] to obtain an
element φ(x) ∈ R.
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Here is the “missing diagram” for both excerpts:

1

U(Z[x])

pxq
univ��

Z[x] U(Z[x])� //Z[x]

R

φ
��

U(Z[x])

UR

Uφ
��

R UR� //

1

UR

pφ(x)q

��
� //

Ring SetU //

Ring(Z[x],−) Set(1, U−)oo
T
//Ring(Z[x],−)

U

ii

T ′
))SSS

SSSS
SSSS

SSSS
Set(1, U−)

U

OO

��

That diagram may be a good starting point to explain the Yoneda Lemma
to “children”.
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7.8 The 2-category of categories
Natural transformations are often drawn as ‘⇒’s in the middle of “cells”

whose walls are functors. If F,G : A → B are functors and T : F → G is
natural transformation, then A,B, F,G, T are drawn like this:

A B

F
''

A B

G

77⇓T

There are several ways to compose functors and natural transformations
— see [Riehl, section 1.7] and [Pow90] for the details and the precise termi-
nology. For example, in

A

B

F

??���������

B

C

R

**

B

C

G

��
A C

H
//

⇓T
⇓U

A C

GF

��
A C

RF

!!
A C

H
//

⇓UF

⇓T
A C

GF

��
A C

H
//

⇓T ·UF= =

we used “whiskering” and then “vertical composition”.
We can use internal views to lower the level of abstraction of the diagrams

above. If we draw the images of an object A ∈ A by the functors and natural
transformations we get:

A

FA

O

GG�������������

FA

GFA

�
""

FA

RFA

d

$$

A HA� //

GFA

RFA
UFA��

RFA

HA
TA��

A

GFA

b

**

A

RFA
N

++

A HA� //

GFA

RFA
UFA��

RFA

HA
TA��

A

GFA

b

**

A HA� //

GFA

HA

TA◦UFA
=(T ·UF )A

��
= =
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7.9 Kan extensions
Kan extensions are usually drawn using 2-cells ([Riehl, definition 6.1.1]),

but they can also be drawn as adjunctions ([Riehl, proposition 6.1.5], [CWM,
section X.3]). Let’s see how to draw them in both ways at the same time in
a way that makes the translation clear. Here is the diagram:

GF ∀Goo �GF

RF

GU
��

∀G

R:=RanFH

∃!U
��

oo �

RF R:=RanFHoo �RF

H

T
��

GF

H

∀V

��

CA CBoo ◦F
CA CB

RanF
//

A BF //

A

B

F

??���������

B

C

R

**

B

C

∀G

��
A C

H
//

⇓T
⇓∃!U

We will consider right Kan extensions only.
Fix F : A → B and a category C. We have a functor (◦F ) : CB →

CA. Suppose that it has a right adjoint, (◦F ) a RanF . For each natural
transformation H : A → C its image by Ranf , R := RanFH, is a natural
transformation R : B→ C. We have:

HomCA(GF,H) ∼= HomCB(G,R)
HomCA(− ◦ F,H) ∼= HomCB(−,RanFH),

and if substitute [− := RanFH] and we transpose idRanFH to the left we
obtain a morphism T : RF → H. The pair (R,H) obeys a certain universal
property, that we will call “Ran-ness”:

∀G : B→ C. ∀V : GF → H. ∃!U : G→ R. (T · UF ) = V.

The usual way of defining right Kan extensions is by starting with the
functors F : A → B and H : A → C and then saying that a pair (R, T ) is
a right Kan extension of H along F iff it obeys Ran-ness; the functor RanF
and the adjunction come later. See [Riehl], section 6.1.

Note that we don’t draw the ‘∀V : GF → H’ in the right half of the
diagram — it would overwrite the rest.
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7.10 All concepts are Kan extensions
Both [CWM] and [Riehl] have sections called “All concepts are Kan ex-

tensions” — section X.7 in [CWM] and 6.5 in [Riehl]. Now that we have a
favorite way of drawing right Kan extensions we can use it to draw diagrams
for 1) binary products in Set are right Kan extensions, 2) limits are right
Kan extensions and 3) left adjoints are right Kan extensions.

1. Let •• be the discrete category with two objects, • be the discrete
category with one object, and ! : •• → • be the unique functor from
•• to •. Then:

(X,X) ∀Xoo �(X,X)

(Y×Z, Y×Z)
(h,h)

��

∀X

Y×Z
∃!h
��

oo �

(Y×Z, Y×Z) Y×Zoo �(Y×Z, Y×Z)

(Y, Z)

(π,π′)
��

(X,X)

(Y, Z)

∀(f,g)

��

Set•• Set•oo ∆:=(◦!)
Set•• Set•

lim:=Ran!
//

•• •! //

••

•

!

??�������������

•

Set

Y×Z

''

•

Set

∀X

��
•• Set

(Y,Z)
//

⇓(π,π′)

⇓∃!h

2. Let I be a finite index category — for example, I =
(

1
↓

2 → 3

)
— and let

C be a category with finite limits. A functor D : I → C is a diagram
of shape I in C. Let’s denote by 1 the discrete category with a single
object — the name ‘1’ is more standard than ‘•’. Then:

∆X ∀Xoo �∆X

∆ limI D

∆f
��

∀X

limI D

∃!f
��

oo �

∆ limI D limI Doo �∆ limI D

D

ε
��

∆X

D

∀γ

��

CI C1oo ∆:=(◦!)
CI C1

lim:=Ran!
//

I 1! //

I

1

!

??�������������

1

C

limI D

))

1

C

∀X

��
I C

D
//

⇓ε

⇓∃!f
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3. Left adjoints are right Kan extensions. If

B oo
L

R
//A

is an adjunction, then (L, ε) is a right Kan extension of idB along R.
In a more compact notation, L := RanRidB — but in this case we only
know the action of RanR on the object idB, and we don’t know if this
RanR can be extended to a “real” functor whose domain is the whole
of BB. The diagram is:

GR ∀Goo �GR

LR

UR
��

∀G

L:=RanRidB

∃!U
��

oo �

LR L:=RanRidB
oo �LR

idB

ε
��

GR

idB

∀V

��

BB BAoo (◦R)

BB BA

RanR
//

B AR //

B

A

R

??������������

A

B

L

))

A

B

∀G

��
B B

idB
//

⇓ε

⇓∃!U

To show that this works we have to prove that ∀V.∃!U.(ε · UR = V ).
We will do that by “inverting the equation ε · UR = V ”:

A B
L
// B A

R
//A B

L
//A A

idA

��
A B

G

��
B B

idB

BB

⇓η ⇓U

⇓ε
= A B

L
// A B

L
//A A

idA

��
A B

G

��
B B

idB

BB

⇓U
⇓idL = U

=

A B
L
// B A

R
//A A

idA

��
A B

G

��
B B

idB

BB

⇓η
⇓V = V L · η

The solution in U := V L ·Gη.
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7.11 A formula for Kan extensions
The sections X.3 of [CWM] and 6.2 of [Riehl] discuss a formula for cal-

culating Kan extensions, that defines RanFH as the functor whose action on
objects is:

B 7→ Lim(B↓F π→ A
H→ Set),

and its action on morphisms is “obvious” in the sense of Section 3. I found
this formula totally impossible to understand until I finally found a way to
visualize what it “meant”.

For each object B ∈ B the functor B↓F H◦π→ Set can be regarded as a
diagram in Set whose shape is the shape of the comma category B↓F . If
A and B are finite preorder categories and F is an inclusion then B↓F can
“inherit its shape” from A; inclusions of preorders are “toy examples” “for
children”, but they give us some intuition to start with, and they can help
us understand the formal version that can handle more general cases.

These are the diagrams for RanF as a right adjoint — note that we use
Set instead of C to make things less abstract,

GF Goo �GF

H

V

��

G

RanFH

U

��

oo //

H RanFH
� // = R

SetA SetBoo ◦F
SetA SetB

RanF
//

A BF //

RB =
(RanFH)B =

Lim(B↓F π→ A
H→ Set)

and here are some diagrams to help us understand the comma category B↓F
— in the compact notation its objects have names like (A, β), but in the
more visual notation they are L-shaped diagrams:

B

FA

β
��

A FA� //A

A′

α
��

FA

FA′

Fα
��

� //

A′ FA′� //

B

FA′

β′=
Fα◦β

��

A BF //

 B

FA

β��
A FA� //


 B

FA′
β′
��

A′ FA′� //


α ��

B↓F

(A, β) A� // A HA� //(A, β)

(A′, β′)

α
��

A

A′

α
��

HA

HA′

Hα
��

� // � //

(A′, β′) A′� // A′ HA′� //

B↓F Aπ //A SetH //
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Let’s see an example.

If A F→ B is the inclusion


2

6
��

5 6//

→


1′ 2′//1′

3′
��

2′

4′
��

3′ 4′//3′

5′
��

4′

6′
��

5′ 6′//

,

then 1′↓F =


( 1′
2 F2 )

( 1′
6 F6 )
��

( 1′
5 F5 ) ( 1′

6 F6 )
//

 and 3′↓F =


( 3′
5 F5 ) ( 3′

6 F6 )
//

,

and (1′↓F H◦π→ Set) =


H2

H6

��
H5 H6

//

 and (3′↓F H◦π→ Set) =


H5 H6

//

;

so R(1′) = Lim(1′↓F H◦π→ Set) = H2 ×H6 H5,
and R(3′) = Lim(3′↓F H◦π→ Set) = H5.
We can follow the same pattern to calculate R(2′), R(4′), R(5′), R(6′).
The square of the adjunction becomes this, in this particular case:

GF Goo �GF

H
��

G

RanFH
��

oo //

H RanFH
� // = R


G2

G6

��
G5 G6

//




G1 G2

//G1

G3

��

G2

G4

��
G3 G4

//G3

G5

��

G4

G6

��
G5 G6

//

oo �


G2

G6

��
G5 G6

//




H2

H6

��
H5 H6

//



��


G1 G2

//G1

G3

��

G2

G4

��
G3 G4

//G3

G5

��

G4

G6

��
G5 G6

//




H2×H6H5 H2
//H2×H6H5

H5

��

H2

H6

��
H5 H6

//H5

H5

��

H6

H6

��
H5 H6

//



��
oo //

H2

H6

��
H5 H6

//




H2×H6H5 H2

//H2×H6H5

H5

��

H2

H6

��
H5 H6

//H5

H5

��

H6

H6

��
H5 H6

//


� //
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7.12 Functors as objects
One way to treat a diagram in Set like this

F :=

{24, 25}

{1}
����
��
��
{24, 25}

{2, 3}

247→2
257→2

��?
??

??
?

{1}

{1}
��?

??
??

?
{2, 3}

{1}
����
��
��

{1}

{0, 1}
1 7→1
��

as a functor is to think that that diagram is an abbreviation — it is just the
upper-right part of a diagram like this,


1

2 3

4

5

↙ ↘
↘ ↙
↓





{24, 25}

{1}
����
��
��
{24, 25}

{2, 3}

247→2
257→2

��?
??

??
?

{1}

{1}
��?

??
??

?
{2, 3}

{1}
����
��
��

{1}

{0, 1}
17→1
��


� //

K SetF //

where we add the extra hint that the index category K is exactly the kite-
shaped preorder category drawn above the “K”.

The convention (CFSh) says that the image by a functor of a diagram
is a diagram with the same shape, so according to that convention we have
F (1) = {24, 25}, F (4→ 5) = ({1} 17→1→ {0, 1}), and so on; so the upper right
part of the diagram above defines F .

Note that the single ‘ 7→’ above the K
F→ Set stands for several ‘ 7→’s, one

for each object and one for each morphism, and note that F is an object of
SetK.
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7.13 Geometric morphisms for children
Let A and B be these preorder categories, and let f : A → B be the

inclusion functor from A to B:

A :=

(
2 3
↘ ↙ ↘

4 5

)
B :=


1

↙ ↘
2 3
↘ ↙ ↘

4 5
↘ ↙

6


The left half of the diagram below is the standard definition of a geometric

morphism f from a topos E to a topos F . A geometric morphism f : E → F is
actually an adjunction f ∗ a f∗ plus the guarantee that f ∗ : E ← F preserves
limits, which is a condition slightly weaker than requiring that f ∗ has a left
adjoint. When that left adjoint exists it is denoted by f !, and we say that
f ! a f ∗ a f∗ is an essential geometric morphism. The only non-standard
thing about the diagram at the left below is that is contains an internal view
of the adjunction f ∗ a f∗.

f ∗G Goo �f ∗G

H
��

G

f∗H
��

H f∗H
� //

oo //

E Foo f
∗

E F
f∗
//

(
G2 G3
↘ ↙ ↘
G4 G5

) 
G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6

oo �

(
G2 G3
↘ ↙ ↘
G4 G5

)

(
H2 H3
↘ ↙ ↘
H4 H5

)��


G1
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5
↘ ↙
G6




H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1



��

(
H2 H3
↘ ↙ ↘
H4 H5

) 
H2×H4H3
↙ ↘

H2 H3
↘ ↙ ↘
H4 H5
↘ ↙

1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

A B
f //

The right half of the diagram is a particular case of the left half. Its lower
line, A f→ B, does not exist in the left half. The inclusion functor f induces
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adjunctions f ! a f ∗ a f∗ as this,

SetA SetB
f !
//

SetA SetBoo f∗SetA SetB

f∗
//

A B
f //

where f ∗ is easy to define and f ! and f∗ not so much — the standard way to
define f ! and f∗ is by Kan extensions.

The big square in the upper part of the diagram is an internal view of the
adjunction f ∗ a f∗, with the functors f ∗G, G, H, and f∗H being displayed as
their internal views. We can choose the sets G1, . . . , G6 and the morphisms
between them arbitrarily, so this is an internal view of an arbitrary functor
G : B→ Set; and the same for H.

The arrow f ∗G ←[ G can be read as a definition for the action of f ∗ on
objects — it just erases some parts of the diagram — and the arrow H 7→ f∗H
can be read as a definition for the action of f∗ on objects — f∗ “reconstructs”
H1 and H6 in a certain natural way. It is easy to reconstruct the actions of
f ∗ and f∗ on morphisms from just what is shown, and to reconstruct the two
directions of the bijection.

The big diagram above can be used 1) to convince people that are not
hardcore toposophers that this diagrammatic language can make some dif-
ficult categorical concepts more accessible, and 2) as a starting point to
generate diagrams “for children” for several parts of the Elephant, and even
to prove new theorems on toposes. For more on (1), see [OL18] and [Och18];
for (2), see [MDE].

7.14 Reading the Elephant
In Section 5.5 we saw a strategy for helping (beginner) students to read a

difficult text on CT: we start with diagrams for the most important concepts,
in both a general case “for adults” and a well-chosen particular case “for
children”, we give them exercises to make sure that they understand the
constructions in the case “for children”, we give them a few more exercises
to make sure that they understand the general case, we ask them to read
excerpts from a standard textbook in a version where the letters were changed
to match the diagrams, and then we ask them to work on the original version
of these excerpts with the original notation, and on some other parts of the
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same chapter... this can be done for the Elephant too — here are the parts
that are more relevant for our diagrams on geometric morphisms, with the
notation adjusted:

Definition 4.1.1. (a) Let F and E be toposes. A geometric
morphism f : E → F consists of a pair of functors f∗ : E → F
(the direct image of f) and f ∗ : F → E (the inverse image of f)
together with an adjunction (f ∗ a f∗), such that f ∗ is cartesian
(i.e. preserves finite limits).

(...)

Example 4.1.4. Let f : A → B be a functor between
small categories. Then composition with f defines a functor f ∗ :
SetB → SetA, which has adjoints on both sides, the left and right
Kan extensions along f : for example, the right Kan extension
Ranf sends a functor H : SetA to the functor whose value at an
object B of B is the limit of the diagram

(B ↓ f) U //A H // Set

(here (B ↓ f) is the comma category whose objects are pairs
(A, φ) with φ : B → fA in B, and U is the forgetful functor from
this category to A). Thus f ∗ is the inverse image of a geometric
morphism SetA → SetB, whose direct image is Ranf .

(...)

We note that the geometric morphisms which arise as in 4.1.4,
though not as special as those of 4.1.2, still have the property that
their inverse image functors have left adjoints as well as right
adjoints. We call a geometric morphism f essential if it has this
property; we normally write f! for the left adjoint of f ∗. With
the aid of this notion, we can prove a partial converse to 4.1.4:

Lemma 4.1.5. Let A and B be small categories such that B
is Cauchy-complete (cf. 1.1.10). Then every essential geometric
morphism f : SetA → SetB is induced as in 4.1.4 by a functor
A→ B.

(...)
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Proposition 4.2.8. With the notation established above,
the counit h∗h∗ → 1 is an isomorphism.

(...)
A geometric morphism h satisfying the condition that the

counit h∗h∗ → 1 is an isomorphism, or the equivalent condition
that h∗ is full and faithful, is called an inclusion (though some
authors prefer the term embedding). We shall study inclusions
in greater detail in the next three sections; for the present, we
digress briefly to note an alternative characterization of them:

The really interesting part would be to show that the unit η of the adjunc-
tion f ∗ a f∗ “is” a sheafification functor, and that the geometric morphism
for children of the diagram yields an example of sheaf... but that would need
lots of different fragments from several different sections of the book.

8 How to name this diagrammatic language
I don’t have any idea!...
It can be used to produce missing diagrams, and sometimes these missing

diagrams are skeletons. We can use it to work in two styles in parallel, “for
adults” and “for children”... maybe something like “Missing Skeletons for
Children”?

Suggestions welcome.

9 Why “my conventions”?
I learned CT as an autodidact in a totally disorganized way. In the first

years I just read, or rather tried to read, everything that was available in
my university’s library, trying to locate the parts that could be useful to my
main interest at that time, that was Non-Standard Analysis and how to do
something similar to NSA but using filter-powers instead of ultrapowers...

It was only after that that I realized that I had to learn how to write. I
remember one time spending a whole evening on an exercise of the beginning
of [LS86] that says just “prove that for categories A, B, and C we have
AB×C ∼= (AB)C” — the full proof had lots of parts, and I saw that I didn’t
know how to organize them in a neat way... also, the proofs given in books
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and articles just state the main parts and pretend that the rest is obvious,
and in the case of AB×C ∼= (AB)C there were no “main parts”, so I had to
learn how to write down a proof in full, and this was a new style to me...

Even now, many years after that, I still have the sensation that I had
to improvise practically everything in my ways — both the “algebraic” way
and the “diagrammatic” way — of writing categorical proofs, and that I still
don’t know even a tiny fraction of the techniques for writing that people learn
when they take CT courses and they have opportunities to discuss exercises
with other students and with TAs and more senior people...

The “my conventions” in the title of this text, and my use of the first
person everywhere, are a way to stress that I still don’t know enough about
other people’s private languages for CT, and that this is an attempt to gain
access to other private languages, diagrammatic or not... I am especially
interested in how people write when they turn their level-of-detail knob to a
very high position.

10 Related and unrelated work
The diagrammatic language that I described here seems to be unrelated

to the ones in [CK17] and [Coe11] — that describe lots of diagrammatic
languages — and also unrelated to [Mar14]. We lower the level of abstraction
— see for example Section 7.8 — while they (usually) raise it.

I’ve taken an approach that is the opposite of [CW01] and [Các04]. Các-
camo and Winskel define a derivation system that can only construct func-
tors, natural transformations, etc, that obey the expected naturality condi-
tions, while we allow some kinds of sloppinesses, like constructing something
that looks like a functor and pretending that it is a functor when it may not
be. When I started working on this diagrammatic language I had a com-
panion derivation system for it; [IDARCT, Section 14] mentions it briefly,
but it doesn’t show the introduction rules that create (proto)functors and
(proto)natural transformations and that allow being sloppy (“in the syntac-
tical world”).

Some of my excuses for allowing one to pretend that a functor is a functor
and leaving the verification to a second stage come from [Che04]. I learned
a lot on how mathematicians use intuition and diagrams from [Krö07] —
[Krö18] is a great summary — and [Cor04], and they have helped me to
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identify which characteristics of my diagrammatic language are very unusual
and may be new, and that deserve to be presented in detail.

Many of the first ideas for my diagrammatic language appeared when
I was reading [See83], [See84], [See87], [Jac99], and [BCS06] and trying to
draw the “missing diagrams” in those papers in both the original notation
and in the “archetypal case” ([IDARCT, Section 16]).

11 What next?
At this point I think that it is more interesting to “implement” more

categorical definitions and proofs in this diagrammatic language than to try
to formalize it completely or try to prove meta-theorems about it. I am
doing that by (re)reading parts of several papers and articles and drawing
the missing diagrams in them; for details and links, see:

http://angg.twu.net/math-b.html#favorite-conventions

Besides this, here’s what I’ve planned for the next steps. Most of them
can be done in parallel.

1. Now there are several very good books on CT for beginners with lots
of diagrams — for example [FS19], [Perrone], and [Mil20]. I want to
try do draw the “missing diagrams” for some of their sections, show
them to some people, and see if they find them useful.

2. I need to learn more Idris and Idris-ct — and then 1) draw the missing
diagrams for some of the modules in the Idris-ct sources (as a visual
guide for the names of the data structures and their fields), 2) imple-
ment some of my diagrams on Idris-ct; a column with Idris-ct code
would be a nice addition to, for example, Section 6.4.

3. The paper [PH2] that I uploaded to Arxiv is a kind of “Sheaves for
Children”, and some philosopher friends of mine who study Alain Ba-
diou — who uses toposes and sheaves in books like [Bad09] and [Bad14]
— expressed a lot of interest in it... the first six sections of [PH2] are
impeccable (I think!) but the last ones, that are the ones that involve
categories, were written in a hurry. I need to rewrite them using tech-
niques like the ones in Section 5.5 to turn them into something like
a “Let’s read some sections of [Elephant] and [Riehl] — an illustrated
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guide”... until I finish that I can’t advertise [PH2], I am too embarassed
by its last sections.
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