Notes on Hyperdoctrines

2020hyp February 25, 2020 22:12

Introduction

One of the main ideas that I tried to develop in my PhD thesis a
looong time ago was that constructions in Category Theory can
be expressed in a language that looks like Natural Deduction.
That language turned out to be very difficult to formalize,
but it gave rise to several spin-offs, most of them related to
translating between languages... basically, between:

1.

> o

the internal language of a topos

2. the language of the categorical constructions in a topos
3.
4. the language of the categorical constructions in a hyper-

the internal language of the “archetypal” topos, Set

doctrine
the languages in Bart Jacobs’s book

the language of a general case (“for adults”)
the language of a particular case (“for children”)

Why hyperdoctrines?

A hyperdoctrine is a category in which we can
interpret first-order logic (“FOL”).

(1 Both Sequent Calculus and Natural Deduction!)

Hyperdoctrines are hard to define (many axioms!)
Toposes are easy to define (5 axioms!)

Every topos is a hyperdoctrine (hard to prove!)
We can interpret FOL in a topos (hard!)

We can interpret FOL in a hyperdoctrine (easy!)

Hyperdoctrines are more “modular” than toposes

(in the sense of [Jac99], pages 8-11).

I have some technical and personal reasons for not

liking toposes very much — see [Och13], sections 12, 19, 20.

Why hyperdoctrines? (2)
The fibration Cod : Set' — Set is an
archetypal hyperdoctrine.

We can use hyperdoctrines to learn Natural Deduction!
Two of the quantifier rules in Natural Deduction

have restrictions that are very technical, and that

only made sense to me when I understood their

categorical versions!!! Or, more precisely, these adjunctions:

EREE

What made me understand them was the concrete example
in the next page...

Quantifiers as adjoints, for children

A concrete example with
X = {07 17 27 37 4}7 Y = {07 1}7

— 00001 - — 01111.
P = 00111, R = 9y777¢

— 00011>

P(z,y) —> 3y:Y.P(z,y)

|
Q(z) =<——Q(z)
| =~ |

R(z,y) —> Yy:Y.R(z,y)

XxY z X

00001 2 . ooo11
| -

QUL o ™ ooim
l -~

oLy Y o g1

eeoooe ™

—= 00000
o000

Quantifiers as adjoints, for children (2)
b
a

Arrows

A > B monic
A - B inclusion

A category of “predicates”

I will use ‘=’ to denote inclusion maps in Set.
The category Set' has:

inclusions as its objects, and

commutative squares as its morphisms.

A N C
A morphism (é) % (1%) in Set?

A *f> C
is a commutative square J J in Set.

B—2-D

The codomain functor Cod : Set' — Set works like this:

Cod((g)):B, cod((g)%(g)) - (B-2~D).

Predicates over a set
I will draw the functor Cod : Set" — Set as going downwards:

Set! (‘?)%(?)
B D
oD

Set B

I will usually omit the downward ‘~’s:

st (1) (5)
B D

CodJ

Some standard terminology

(See [Jac99], p.26, for the full definition!)
p:E — B is a fibration (the general case),
Cod : Set’ — Set is a fibration (our archetypal case),

A s C .
Set! (}IB) (f—g)> (é) < Entire category
Codl < Projection functor
Set B g D < Base category

A
(}f__;) is an object “over” B,

A : c
(}é) (f—g)> (é) is a morphism “over” B 4 D.
Cod™*(B) is the fiber over B (a category!)

10

Dummett
The rules for the quantifiers in ND, from [Dum00], p.89:

I':Ay) T:VzA(z)
T:vVzA(z) T:A(t)

T:A(y) T:32A(z) AA(y):C
T:3zA(x) I IA:C A

Let’s specialize and change notation a bit...

P@rQ@y) | P@) - YQay)
P(@) - V¥-Q(z,y) P(@) - Q(x, /(@)
P@) Q. f@) | P@)r3YQ@y) R@).Qw.f()rS@)

P(z) - 3y:Y.Q(z,y) P(z), R(z) - 5(x)

11

12

The rule 3- in Natural Deduction
Let’s convert the hardest rule, 3—, to ND...

P(z) - 3yY.Q(z,y) R(z),Q(z, f(z)) F S(x) 3
P(x),R(z) + S(x)

It becomes:
Plr) R [Q /()]
el 1B P(z) . R(x)
JyY.Q(,y) S 4 Ly
S(x) 7 — S(z)
where:
a = P(x)r IyY.Q(z,y)
B = R(z),Q(z, f(z))+ S(x)
v = P(z),R(x)+ S()

13

A variant of the rule 3-
Let’s look at a simpler rule, called ‘3 - -

P(x) R() [Q.f(@)]'

Lo LB P(z) R(z)
JyY.Q(x,y) S 5 D
S(x) ’ — S(x)
[Q(z, f(2))]*
D0 3yY.Q(z,y)
Jy:Y.Q(z,y) S'(z) N D€
S'(x) = §'(x)

Qe f(@) F 8'(x) _
35Y.Q(r.y) - 5'(x)

14

The rules 3- and 3 - - are “equivalent” (1)

Q(z, f(x)) - 5" (x)
Fy:Y.Q(z,y) - S'(x)

P(a) - yY.Qry) R(x), Q. f(z)) - $(z)
P(z), R(z) - S(x)

R(z),Q(z, f(z)) - S(x)
Q(z, f(z)) - R(z) D S(x)
P(z) r 3yY.Q(z,y) 3yY.Q(z,y) v R(z) o S(ff)
P(z)+ R(x) o S(x)
P(z),R(z)+ S(x)

ut

15

The rules 3- and 3 - - are “equivalent” (2)
making A := {} instead of A := {R(x)},
and after that P(z) := 3y:Y.Q(x,y) and S(z) := §'(x),

Q. f() - S'()
Jy:Y.Q(z,y) + S'(z)

P(z) - IyY.Q(z,y) R(x),Qz, f(z)) F S(z) -
P(z),R(z)+ S(x)

P(z) - 3yY.Q(z,y) Qz, f(x)) - S(x) .
P(x) + S(z)

WY-Q(z,y) - YO y) Q. f(@)) v §(x)
Jy:Y.Q(z,y) - S'(z)

Predicates, visually

16

We can use hyperdoctrines to understand:

1. the rules for 3 in ND

2. some notations in [Jac99]

3. the internal language of a topos

4. polymorphism (as in Haskell; advanced)

We will do (1) and (2) in these notes.

17

Judgments (for children)

We will interpret a: A,b: B, P(a,b) - Q(a,b) as:
for every choice of a € A,

for every choice of b e B,

if P(a,b) is true

then Q(a,b) is true.

...or, equivalently, as:
{(a,b) e Ax B | P(a,b)} c{(a,b) e Ax B|Q(a,b) }.

For variants of this and lots of fun (yeah!), see:
http://angg.twu.net/LATEX/2019notes-types.pdf
(slides 14-16).

18

http://angg.twu.net/LATEX/2019notes-types.pdf

19

Judgments (for children, but categorically)
So a: A, P(a) - Q(a) means

{acA|P(a)} c{acA|Q(a)},

and this is true if and only if

we have arrows ‘— — >’ in:

{acA|P(a)} - - > {acA|Q(a) } {acA|P(a)} - — > {acA|Q(a) }

N/

When these arrows exist they are unique.

A id A

Predicates over a set (2)
A
I will say that (]ig) is an object “over” B, and that

(g) M (g) is a morphism “over” B 4 D.
Some standard terminology: in our particular case,
Cod : Set’ — Set is a fibration.

Cod is the projection functor.

Set’ is the total category (or the entire category).
Set is the base category.

General case (see [Jac99], p.26, for the full definition):

p:E - B is a fibration.

p is the projection functor.

E is the total category (or the entire category).
B is the base category.

20

For the general case and a formal definition see [Jac99)],
page 26; he uses the notation p: E — B...

Set’
| Cod
Set

hi
Set’

| Cod
Set

E
Ip
Set

21

22

Set’ E (entire category)
} Cod I p (projection functor)
Set B (base category)
Set!
The functor | | Cod | is a fibration.
Set
E
General case: | |p
B

The fiber over an object B of the base category

Some shorthands:
{acA|}
)

and I will use this notation
I will draw

23

PL (1)

ol S R

AxB

Ords
Ords
Ords
Ords
Ords
Ords

lcololvioloRoloNole)

Ords
Ords
Ords
Ords
Ords
Ords
Ords
Ords
Ords
Ords

24

PL (1) in another notation

1 S} T

Q © P

A (C] Q

B] R
AxB] PAQ
A-Q] PoQ
b

Plb:= f(a)]

JbeB.P

chshelivvishoholoRele)

[CRORONOROCRONOROCRONO

25

PL (2)

Ax€o - b

DO D009 D2

Ords

Ords
Ords
Ords
Ords
Ords
Ords

Ords
Ords
Ords
Ords
Ords

(T7)

(A)
(AE)
(AE)

(=F)
(=0

26

PL (2) in another notation

* T 0 (€] (tI)
P P : Q (C]
q Q : Q S}
s PrQ : Q (C]

(p,q) PAQ : Q (€] (A)
TS P Q S) (AE)
28 Q : Q S) (AE)

p o P : Q (C]

q : Q : Q (C]

f o PoQ : Q S)
fp Q : Q S) (DE)
Ap:Pqg @ PDQ : Q (C] (=1)

PL (3)

1(b)
Isaor(b)

VaeA-a

5 Q9 Q

o[r/a]
YacA-o
YacA- o

oop
a
(Zaecd-o)>p

D 220200

Ords
Ords
Ords
Ords
Ords
Ords

Ords
Ords
Ords

28

(indet)

(%1)

(%1)

(indet n.f.)
(ZE)

29

PL (3) in another notation

b : B (C) (indet)
P(a,b) : Q S}
fla) : B (C]
p o P(a, f(a)) = 2 : ©
I(p) WB.Pab) : Q : © (NI)
Ispo - (b) 3b:B.P(a,b) : (C) (XI)
a P(a,b)2Q(a) : Q (C)
b : B : © (indet n.f.)
VaeA-a : (30:B.P(a,b))2Q(a) : Q : © (ZE)

PL (4)

a o
«
AacA-a : TlacA-o

2 HaeA-i
a{r} : o[r/a]

2O OO0

Ords
Ords
Ords

Ords
Ords
Ords

(indet n.f.)
(IL1)

(IIE)

30

PL (4) in another notation

o R(a,b) : Q2 : ©
b : B : © (indet n.f.)
Ar @ V0:B.R(a,b) : Q : © (T17)
f@ : B :©
g : VbB.R(a,b) : Q : ©
9(f(a)) = R(a,f(a)) : Q : © (IIE)

quants-my-1:

{ansemen } > {25500
|-~
{ (a,?)(:él)xB } { Qaiz)
|-~
{(apsenrp | = {TeBED
AxB—— " oA X9
xiP

xiR

32

quants-my-2:

Pr——3,;P
TQ <—Q
Q'HVTK'Q

XiP——>

XiR

33

quants-seely-1:

34

35

The rules for ‘3’ in Natural Deduction
The rules are easier to understand and visualize
if we use bounded quantifiers and finite sets...
Bounded: 3y:Y.P(x,y)

Unbounded: Jy.P(x,y)

Finite sets: X ={1,2,3,4,5,6}, Y ={0,1,2}

)=

Cod : Set’ — Set

()

I learned hyperdoctrines

