|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020macdonaldsobral.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2020macdonaldsobral.tex" :end))
% (defun d () (interactive) (find-pdf-page "~/LATEX/2020macdonaldsobral.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2020macdonaldsobral.pdf"))
% (defun e () (interactive) (find-LATEX "2020macdonaldsobral.tex"))
% (defun u () (interactive) (find-latex-upload-links "2020macdonaldsobral"))
% (defun v () (interactive) (find-2a '(e) '(d)) (g))
% (find-pdf-page "~/LATEX/2020macdonaldsobral.pdf")
% (find-sh0 "cp -v ~/LATEX/2020macdonaldsobral.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2020macdonaldsobral.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2020macdonaldsobral.pdf
% file:///tmp/2020macdonaldsobral.pdf
% file:///tmp/pen/2020macdonaldsobral.pdf
% http://angg.twu.net/LATEX/2020macdonaldsobral.pdf
% (find-LATEX "2019.mk")
% «.title» (to "title")
% «.monads» (to "monads")
% «.EM-construction» (to "EM-construction")
% «.EM-adjunction» (to "EM-adjunction")
% «.kleisli-construction» (to "kleisli-construction")
% «.kleisli-adjunction» (to "kleisli-adjunction")
\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
%\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
\usepackage{proof} % For derivation trees ("%:" lines)
\input diagxy % For 2D diagrams ("%D" lines)
\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx15} % (find-LATEX "edrx15.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrxchars.tex % (find-LATEX "edrxchars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%
% (find-es "tex" "geometry")
\begin{document}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% «title» (to ".title")
{\setlength{\parindent}{0em}
\footnotesize
Notes on John MacDonald and Manuela Sobral's ``Aspects of Monads'':
\url{https://doi.org/10.1017/CBO9781107340985.008}
a chapter of ``Categorical Foundations: Special Topics in Order,
Topology, Algebra, and Sheaf Theory'', edited by Maria Cristina
Pedicchio and Walter Tholen, Cambridge, 2003.
\ssk
These notes are at:
\url{http://angg.twu.net/LATEX/2020macdonaldsobral.pdf}
}
% __ __ _
% | \/ | ___ _ __ __ _ __| |___
% | |\/| |/ _ \| '_ \ / _` |/ _` / __|
% | | | | (_) | | | | (_| | (_| \__ \
% |_| |_|\___/|_| |_|\__,_|\__,_|___/
%
% «monads» (to ".monads")
\section*{1.2. Monads}
% (find-books "__cats/__cats.el" "macdonald-sobral")
% (find-mcdsobralpage (+ -212 216) "1.2. Monads")
% (find-mcdsobraltext (+ -212 216) "1.2. Monads")
% (find-mcdsobralpage (+ -212 217) "Proposition. Any adjunction")
% (find-mcdsobraltext (+ -212 217) "Proposition. Any adjunction")
% (find-symbolspage 70 "\\rightharpoonup")
% (find-symbolstext 70 "\\rightharpoonup")
(Page 216):
A monad on a category $𝐛X$ is a system $(T,η,μ)$...
(Page 217):
Proposition: any adjunction $(F,G,η,ε): 𝐛X \rightharpoonup 𝐛A$
determines a monad...
%D diagram ??
%D 2Dx 100 +20 +20 +20 +20 +20 +20 +20
%D 2D 100 A0 B0 B1 D0 E0
%D 2D
%D 2D +20 A1 B2 B3 D1 E1 F0 F1 F2
%D 2D
%D 2D +20 C0 C1 D2 E2 F3 F4 F5
%D 2D
%D ren A0 A1 ==> FGA A
%D ren B0 B1 B2 B3 ==> FX X A GA
%D ren C0 C1 ==> 𝐛A 𝐛X
%D ren D0 D1 D2 ==> X GFX GFGFX
%D ren E0 E1 E2 ==> 1 T T^2
%D ren F0 F1 F2 ==> T T^2 T^3
%D ren F3 F4 F5 ==> T^2 T T^2
%D
%D (( A0 A1 -> .plabel= l εA
%D B0 B1 <-|
%D B0 B2 ->
%D B1 B3 ->
%D B2 B3 |->
%D C0 C1 <- sl^ .plabel= a F
%D C0 C1 -> sl_ .plabel= b G
%D D0 D1 -> .plabel= r ηX
%D D1 D2 <- .plabel= r GεFX
%D E0 E1 -> .plabel= r η
%D E1 E2 <- .plabel= r μ
%D F0 F1 -> .plabel= a Tη
%D F1 F2 <- .plabel= a Tμ
%D F0 F3 -> .plabel= l ηT
%D F0 F4 -> .plabel= m 1_𝐛X
%D F1 F4 -> .plabel= r μ
%D F2 F5 -> .plabel= r μT
%D F3 F4 -> .plabel= b μ
%D F4 F5 <- .plabel= b μ
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
% _____ __ __ ____
% | ____| \/ | / ___|
% | _| | |\/| | | |
% | |___| | | | | |___
% |_____|_| |_| \____|
%
% «EM-construction» (to ".EM-construction")
% (mdsp 1 "EM-construction")
% (mds "EM-construction")
\section*{1.3. The Eilenberg-Moore Construction}
(Page 217):
% (find-mcdsobralpage (+ -212 217) "1.3. The Eilenberg-Moore construction")
% (find-mcdsobraltext (+ -212 217) "1.3. The Eilenberg-Moore construction")
...category of T-algebras which will be denoted by $𝐛X^T$.
%D diagram ??
%D 2Dx 100 +20 +20 +20
%D 2D 100 A0 B0 B1 B2
%D 2D +10 A0
%D 2D +10 B3 B4
%D 2D
%D 2D +20 A1 C1 C2
%D 2D
%D 2D +20 A2 C3 C4
%D 2D
%D 2D +20 A3 D0
%D 2D
%D ren A0 A1 A2 A3 ==> (X,ξ) (X,ξ) (Y,Θ) 𝐛X^T
%D ren B0 B1 B2 ==> X TX T^2X
%D ren B3 B4 ==> X TX
%D ren C1 C2 ==> X TX
%D ren C3 C4 ==> Y TY
%D ren D0 ==> 𝐛X
%D
%D (( A0 place
%D A1 A2 -> .plabel= l f
%D A3 place
%D
%D B0 B1 -> .plabel= a ηX
%D B1 B2 <- .plabel= a μX
%D B0 B3 -> .plabel= l 1_X
%D B1 B3 -> .plabel= r ξ
%D B2 B4 -> .plabel= r Tξ
%D B3 B4 <- .plabel= a ξ
%D
%D C1 C2 <- .plabel= a ξ
%D C1 C3 -> .plabel= l f
%D C2 C4 -> .plabel= r Tf
%D C3 C4 <- .plabel= a θ
%D D0 xy+= 10 0
%D D0 place
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
% _____ __ __ _ _
% | ____| \/ | __ _ __| |(_)
% | _| | |\/| | / _` |/ _` || |
% | |___| | | | | (_| | (_| || |
% |_____|_| |_| \__,_|\__,_|/ |
% |__/
%
% «EM-adjunction» (to ".EM-adjunction")
\subsection*{The Eilenberg-Moore adjunction}
(Page 218):
Proposition: For a monad $T=(T,η,μ)$ on $𝐛X$ there is a free-forgetful
adjunction
%
$$𝐛X^T \two/->`<-/<250>^{G^T}_{F^T} 𝐛X$$
%
which induces the monad $T$ in $𝐛X$.
%D diagram ??
%D 2Dx 100 +35 +30 +20 +20 +30 +25
%D 2D 100 A0 A1 E1
%D 2D
%D 2D +20 C0 A2 A3 D1 E2 E3
%D 2D
%D 2D +20 C1 A4 A5 D2 D3 E4 E5
%D 2D
%D 2D +20 A6 A7
%D 2D
%D 2D +20 B0 B1
%D 2D
%D ren A0 A1 ==> (TX',μX') X'
%D ren A2 A3 ==> (TX,μX) TX
%D ren A4 A5 ==> (Y,θ) Y
%D ren A6 A7 ==> (Y',θ') Y'
%D ren B0 B1 ==> 𝐛X^T 𝐛X
%D ren C0 C1 ==> (TX,μX) (X,ξ)
%D ren D1 ==> TX
%D ren D2 D3 ==> Y TY
%D ren E1 ==> X
%D ren E2 E3 ==> (TX,μ) TX
%D ren E4 E5 ==> (Y,θ) Y
%D
%D (( A0 A1 <-|
%D A0 A2 -> .plabel= l Tf
%D A1 A3 -> .plabel= r f
%D A2 A3 <-|
%D A4 A5 |->
%D A4 A6 ->
%D A5 A7 ->
%D A6 A7 |->
%D B0 B1 <- sl^ .plabel= a F^T
%D B0 B1 -> sl_ .plabel= b G^T
%D
%D C0 C1 -> .plabel= l \sm{ε^T(X,ξ):=\\ξ}
%D
%D D1 D2 -> .plabel= a \ovl{f}
%D D1 D3 -> .plabel= r Tf
%D D2 D3 <- .plabel= b θ
%D
%D E1 E3 -> .plabel= r \sm{η^TX:=\\ηX\\\text{(univ)}}
%D E2 E3 |->
%D E2 E4 -> .plabel= l \sm{∃!\ovl{f}:=\\θ·Tf}
%D E3 E5 -> .plabel= r \ovl{f}
%D E4 E5 |->
%D E1 E5 -> .slide= 35pt .plabel= r ∀f
%D ))
%D enddiagram
%D
$$\pu
\diag{??}
$$
\newpage
% _ ___ _ _ _ ____
% | |/ / | ___(_)___| (_) / ___|
% | ' /| |/ _ \ / __| | | | |
% | . \| | __/ \__ \ | | | |___
% |_|\_\_|\___|_|___/_|_| \____|
%
% «kleisli-construction» (to ".kleisli-construction")
% (find-mcdsobralpage (+ -212 220) "1.6. The Kleisli construction")
% (find-mcdsobraltext (+ -212 220) "1.6. The Kleisli construction")
% (mdsp 4 "kleisli-construction")
% (mds "kleisli-construction")
\subsection*{1.6. The Kleisli construction}
(Page 220):
%D diagram ??
%D 2Dx 100 +20 +20 +20 +35
%D 2D 100 A0 F0 R0
%D 2D
%D 2D +20 B0 G0
%D 2D +10 R1
%D 2D +10 B1 G1
%D 2D
%D 2D +20 C0 H0
%D 2D +10 R2
%D 2D +10 C1 H1
%D 2D
%D 2D +20 D0 I0
%D 2D
%D 2D +20 D1 I1 R3
%D 2D
%D 2D +20 D2 I3 I2
%D 2D
%D 2D +20 E0 J0
%D 2D
%D ren A0 F0 ==> X X
%D ren B0 B1 G0 G1 ==> X Y X TY
%D ren C0 C1 H0 H1 ==> X X X TX
%D ren D0 D1 D2 I0 I1 I2 I3 ==> X Y Z X TY T^2X TZ
%D ren E0 J0 ==> 𝐛X_T 𝐛X
%D
%D (( A0 place
%D B0 B1 -> .plabel= l f
%D C0 C1 -> .plabel= l \id_X
%D D0 D1 -> .plabel= l f
%D D1 D2 -> .plabel= l g
%D E0 place
%D
%D F0 place
%D G0 G1 -> .plabel= r f
%D H0 H1 -> .plabel= r η_X
%D I0 I1 -> .plabel= r f
%D I1 I2 -> .plabel= r Tg
%D I2 I3 -> .plabel= b μ_Z
%D J0 xy+= 10 0 place
%D
%D R0 .tex= \defobjs place
%D R1 .tex= \defhoms place
%D R2 .tex= \defids place
%D R3 .tex= \defcomp place
%D ))
%D enddiagram
%D
$$\pu
\def\MLL#1#2#3#4{\begin{array}{l} #1\\ #2 \\ #3 \\ #4 \end{array}}
\def\ML#1#2{\begin{array}{l} #1\\ #2 \end{array}}
\def\MC#1#2{\begin{array}{l} #1\\ #2 \end{array}}
\def\MR#1#2{\begin{array}{r} #1\\ #2 \end{array}}
\def\defobjs{\begin{array}{l}
\Objs(𝐛X_T) := \\
\Objs(𝐛X) \\
\end{array}
}
\def\defhoms{\begin{array}{l}
\Hom_{𝐛X_T}(X,Y) := \\
\Hom_{𝐛X}(X,TY) \\
f:X→Y \text{ in } 𝐛X_T := \\
f:X→TY \text{ in } 𝐛X \\
\end{array}
}
\def\defids {\begin{array}{l}
\id_{𝐛X_T}(X) := \\
η_X \\
\end{array}
}
\def\defcomp{\begin{array}{c}
g·f \text{ in } 𝐛X_T := \\
μ_Z·Tg·f \text{ in } 𝐛X \\
\end{array}
}
\diag{??}
$$
\newpage
% _ ___ _ _ _ _ _
% | |/ / | ___(_)___| (_) __ _ __| |(_)
% | ' /| |/ _ \ / __| | | / _` |/ _` || |
% | . \| | __/ \__ \ | | | (_| | (_| || |
% |_|\_\_|\___|_|___/_|_| \__,_|\__,_|/ |
% |__/
%
% «kleisli-adjunction» (to ".kleisli-adjunction")
% (mdsp 4 "kleisli-adjunction")
% (mds "kleisli-adjunction")
% (find-mcdsobralpage (+ -212 221) "Kleisli adjunction")
% (find-mcdsobraltext (+ -212 221) "Kleisli adjunction")
\section*{The Kleisli adjunction}
(Page 221):
For a given monad $T$ there exists the Kleisli adjunction...
\end{document}
% __ __ _
% | \/ | __ _| | _____
% | |\/| |/ _` | |/ / _ \
% | | | | (_| | < __/
% |_| |_|\__,_|_|\_\___|
%
% <make>
* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-LATEXfile "2019planar-has-1.mk")
make -f 2019.mk STEM=2020macdonaldsobral veryclean
make -f 2019.mk STEM=2020macdonaldsobral pdf
% Local Variables:
% coding: utf-8-unix
% ee-tla: "mds"
% End: