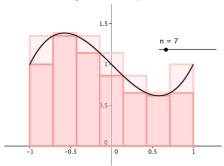
Cálculo 2 - 2021.2

Aula 13: integrais como somas de retângulos (2)

Eduardo Ochs - RCN/PURO/UFF http://angg.twu.net/2021.2-C2.html

Aproximações por cima e por baixo

Uma das figuras na p.2 das notas da Cristiane Hernández é esta:



Ela mostra uma tentativa de calcular uma integral fazendo uma aproximação por retângulos por baixo e uma aproximação por retângulos por cima para y = f(x) no intervalo entre x = -1 e x = 1. A curva y = f(x) fica entre estas duas aproximações.

Porque aprender isto

As definições formais de "aproximação por retângulos por baixo" e "aproximação por retângulos por cima" são bem trabalhosas. Elas envolvem alguns truques com conjuntos infinitos, "para todo" e "existe", que a maioria dos livros de Cálculo pula...

Nós vamos ver essas definições em detalhes porque entendê-las e aprender a visualizar cada subexpressão delas vai acabar sendo muito útil pras próximas matérias de Matemática do curso de vocês.

No material da aula 2 eu pedi pra vocês aprenderem a fazer certos desenhos sem contas, chamei isso de o "jeito esperto", e disse que fazêlos calculando todas as coordenadas era o "jeito burro". Na discussão desse material pelo Telegram a Eduarda me pediu pra explicar melhor isso, e eu dei essa explicação aqui...

Tenta aprender a não fazer as contas... se você fizer tudo pelas contas você vai demorar muito mais e não vai descobrir um monte de truques importantes que a gente só descobre se a gente tenta aprender a visualizar tudo geometricamente...

Acho que eu tenho um exemplo bom.

Num dos primeiros slides eu usei uma figura copiada das notas da Cristiane Hernandez em que ela usa uma partição com 7 intervalos - ela até escreveu do lado "n=7"...

Daqui a pouco a gente vai ter que usar figuras — que a gente não vai poder desenhar explicitamente com todos os detalhes — com 10 intervalos, ou 100, ou 1000, ou um milhão de intervalos

Se você aprender a visualizar tudo sem contas você vai conseguir visualizar a figura com um milhão de intervalos em poucos segundos.

E se você tiver que fazer as contas pra um milhão de intervalos você vai gastar um tempo que a gente não tem =(

Imagens de conjuntos

Dê uma olhada na seção 1.3 do Martins/Martins.

Nós vamos usar uma notação um pouco diferente da deles.

Se
$$f: A \to \mathbb{R}$$
 (obs: $A = dom(f)$),

$$\begin{array}{rcl} \operatorname{gr}_f &=& \{\,(x,f(x))\mid x\in A\,\},\\ \operatorname{im}_f &=& \{\,f(x)\mid x\in A\,\},\\ \operatorname{gr}_f(B) &=& \{\,(x,f(x))\mid x\in B\,\},\\ F(B) &=& \{\,f(x)\mid x\in B\,\}, \end{array}$$

Por exemplo, se

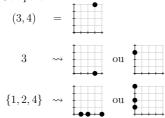
$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

e $B = \{-1, 0, 1, 2\}$ então:

$$\begin{array}{ll} \operatorname{gr}_f(B) &=& \operatorname{gr}_f(\{-1,0,1,2\}), \\ &=& \{(x,f(x)) \mid x \in \{-1,0,1,2\}\} \\ &=& \{(-1,f(-1)),(0,f(0)),(1,f(1)),(2,f(2))\} \\ &=& \{(-1,(-1)^2),(0,0^2),(1,1^2),(2,2^2)\} \\ &=& \{(-1,1),(0,0),(1,1),(2,4)\} \\ F(B) &=& \{f(x) \mid x \in \{-1,0,1,2\}\} \\ &=& \{(-1)^2,0^2,1^2,2^2\} \\ &=& \{1,0,1,4\} \\ &=& \{0,1,4\} \end{array}$$

Um par de números, como (3,4), só pode ser representado no \mathbb{R}^2 de um jeito, mas um número, como 3, pode ser representado no \mathbb{R}^2 tanto como um ponto do eixo x – e aí ele vira o ponto (3,0) – ou como um ponto do eixo y – e aí ele vira o ponto (0,3). E um conjunto de números também pode ser representado no \mathbb{R}^2 tanto como um "subconjunto do eixo x" quanto como um "subconjunto do eixo x" quanto como um "subconjunto do eixo x".

Compare:



Se visualizarmos B como um subconjunto do eixo x então $\operatorname{\sf gr}_f(B)$ é o resultado de "levantar" cada ponto de B para o ponto correspondente no gráfico de f, e F(B) é o resultado de projetar todos os pontos de $\operatorname{\sf gr}_f(B)$ no eixo y.

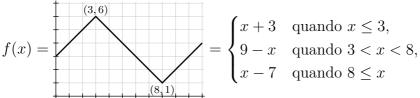
Exercício 1.

Sejam $f(x) = x^2$ e $B = \{-3, -2, -1, 0, 1, 2\}.$

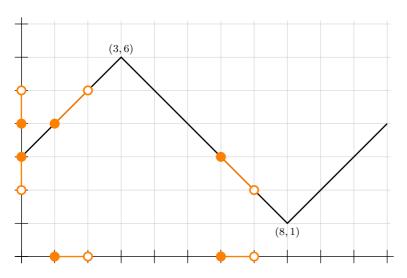
- a) Calcule F(B).
- b) Calcule $\operatorname{\mathsf{gr}}_f(B)$.
- c) Represente graficamente num gráfico só: B "como um subconjunto do eixo x", $\operatorname{\sf gr}_f(B),$ F(B) "como um subconjunto do eixo y".
- d) Represente graficamente num gráfico só: B "como um subconjunto do eixo y", $\operatorname{\mathsf{gr}}_f(B),$ F(B) "como um subconjunto do eixo x".

Imagens de intervalos

Seja:



Se B é um conjunto infinito — por exemplo, $B = [1,2) \cup [6,7)$ — não dá pra calcularmos $\operatorname{\sf gr}_f(B)$ e F(B) fazendo as contas pra todos os pontos... É melhor fazer desenhos.



Neste caso temos

$$F([1,2) \cup [6,7)) = (2,3] \cup [4,5).$$

Exercício 2.

Seja f a função definida dois slides atrás.

Calcule:

- a) F([2,3))
- b) F([2,4))
- c) F((2,4))
- d) F((2,9))
- e) $F([1,2) \cup [4,5))$
- f) $F([1,2) \cup \{3\} \cup [4,5))$

Dica: assista este vídeo:

http://angg.twu.net/eev-videos/2020-2-C2-somas-2.mp4 https://www.youtube.com/watch?v=EqOpt2gt0xQ no trecho entre 7:10 e 12:45...

"As pessoas que tentam fazer tudo por contas geralmente acham que F([a,b]) = [f(a), f(b)]. Isso está COMPLEMENTAMENTE errado..."

Tipos

Tudo que nós vamos fazer neste PDF pode ser visualizado e tipado. Você já viu um pouco de tipos em C e em Física; em Física os "tipos" são parcialmente determinados pelas unidades — metros são distância, segundos são tempo, metros/segundo é uma unidade de velocidade, e assim por diante...

Nos itens c e d do exercício 1 você viu que você podia interpretar B como um subconjunto do eixo x e F(B) como subconjunto do eixo y e também podia tentar fazer o contrário — B como subconjunto do eixo y e F(B) como subconjunto do eixo x — mas a primeira interpretação fazia muito mais sentido.

Exercício 3.

Para cada uma dos proposições abaixo diga se ela é verdadeira ou falsa.

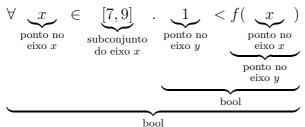
a)
$$\forall x \in [7, 9]. 1 < f(x)$$

b)
$$\forall x \in [7, 9]. 1 \le f(x)$$

c)
$$\exists x \in [7, 9]. 1 < f(x)$$

d)
$$\exists x \in [7, 9]. 1 \le f(x)$$

Dica:



Definindo proposições

Da mesma forma que podemos definir funções nós podemos definir proposições.

Uma proposição é uma função que retorna ${\bf V}$ ou ${\bf F}$.

Seja
$$P(y) = (\forall x \in [7, 9]. y \le f(x)),$$
 onde esta função f é a do slide 8 .

Note que:

$$P(y) = (\forall x \in [7, 9]. y \le f(x))$$

$$P(0) = (\forall x \in [7, 9]. 0 \le f(x))$$

$$P(1) = (\forall x \in [7, 9]. 1 \le f(x))$$

$$P(2) = (\forall x \in [7, 9]. 2 \le f(x))$$

É bem difícil trabalhar com expressões como ' $\forall x \in A$' e ' $\exists x \in A$' quando o conjunto A é infinito. Nos próximos exercícios nós camos ver como visualizar proposições como as P(0), P(1) e P(2) acima.

"Para todo" (\forall) e "existe" (\exists)

$$(\forall a \in \{2, 3, 5\}.a^{2} < 10) = (a^{2} < 10)[a := 2] \land (a^{2} < 10)[a := 3] \land (a^{2} < 10)[a := 5]$$

$$= (2^{2} < 10) \land (3^{2} < 10) \land (4^{2} < 10)$$

$$= (4 < 10) \land (9 < 10) \land (16 < 10)$$

$$= \mathbf{V} \land \mathbf{V} \land \mathbf{F}$$

$$= \mathbf{F}$$

$$(\exists a \in \{2, 3, 5\}.a^{2} < 10) = (a^{2} < 10)[a := 2] \lor (a^{2} < 10)[a := 3] \lor (a^{2} < 10)[a := 5]$$

$$= (2^{2} < 10) \lor (3^{2} < 10) \lor (4^{2} < 10)$$

$$= (4 < 10) \lor (9 < 10) \lor (16 < 10)$$

$$= \mathbf{V} \lor \mathbf{V} \lor \mathbf{F}$$

$$= \mathbf{V}$$

Visualizando '∀'s e '∃'s

Repare...

$$\begin{array}{lll} (\forall x \in \{1, \dots, 7\}.2 \leq x) & = & \mathbf{F} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \\ (\forall x \in \{1, \dots, 7\}. & x < 4) & = & \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \\ (\forall x \in \{1, \dots, 7\}.2 \leq x < 4) & = & \mathbf{F} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \\ (\forall x \in \{1, \dots, 7\}. & x = 6) & = & \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{V} \wedge \mathbf{F} \\ (\forall x \in \{1, \dots, 7\}.2 \leq x < 4 \vee x = 6) & = & \mathbf{F} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{V} \wedge \mathbf{F} \\ \end{array}$$

...que dá pra visualizar o que a expressão $(\forall x \in \{1, ..., 7\}. 2 \le x < 4 \lor x = 6)$ "quer dizer" visualizando os 'V's e 'F's de expressões mais simples, e combinando esses "mapas" de 'V's e 'F's.

Visualizando ' \forall 's e ' \exists 's (2)

Às vezes vai valer a pena definir proposições como nomes mais curtos, como $F(x) = (2 \le x)$, $G(x) = (x \le 4)$, H(x) = (x = 6)... Aí:

$$\begin{array}{lll} (\forall x \in \{1, \dots, 7\}.F(x)) & = & \mathbf{F} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \wedge \mathbf{V} \\ (\forall x \in \{1, \dots, 7\}. & G(x)) & = & \mathbf{V} \wedge \mathbf$$

É isso que a gente vai fazer pra analisar expressões como ($\forall x \in A$._____) e ($\exists x \in A$._____) e descobrir quais são verdadeiras e quais não — mesmo quando o conjunto A é um conjunto infinito, como \mathbb{N} , \mathbb{R} ou [2, 10].

Visualizando '∀'s e '∃'s (3)

Às vezes vamos ter que fazer figuras com muitos 'V's e 'F's, e vai ser mais fácil visualizar onde estão os 'V's e 'F's delas se usarmos sinais mais fáceis de distinguir...

Por exemplo, se $\bullet := V e \circ := F$ então:

Você pode fazer as suas próprias definições — como o meu "• := V e ∘ := F" acima — mas elas têm que ficar claras o suficiente... lembre da dica 7: http://angg.twu.net/LATEX/2021-2-C2-intro.pdf#page=3

Introdução ao exercício 4

O exercício 4 dos próximos slides é uma versão bem reorganizada de um exercício grande do semestre passado. Eu mantive os nomes dos itens dele, e como os itens (a)–(e) são muito mais difíceis que os itens (f)–(n) nós vamos ver os itens (f)–(n) primeiro e os itens (a)–(e) depois.

Tem bastante material sobre este exercício neste PDF:

"Comentários sobre o exercício 4"

http://angg.twu.net/LATEX/2021-2-C2-somas-2-4.pdf

Exercício 4.

Sejam f a função do slide 8, e sejam:

$$\begin{array}{lcl} G(x,y) & = & (y \leq f(x)) \\ Q(y) & = & (\forall x \in \{7,8,9\}.\, y \leq f(x)) \\ & = & (\forall x \in \{7,8,9\}.\, G(x,y)) \end{array}$$

- f) Calcule G(7,2), G(8,2), G(9,2).
- g) Calcule G(7,1), G(8,1), G(9,1).
- h) Use as idéias dos quatro slides anteriores a este para representar o que você obteve nos itens (f) e (g) como bolinhas pretas e brancas nos pontos (7, 2), (8, 2), (9, 2), (7, 1), (8, 1) e (9, 1) do plano xy.
- i) Q(2) corresponde ao ' \wedge ' de quais três bolinhas? Faça um círculo (amassado) em torno delas e mande foto pro grupo. j) Q(1) corresponde ao ' \wedge ' de quais três bolinhas? Faça um círculo (amassado) em

torno delas e mande foto pro grupo.

Expanda e calcule/simplificar cada uma das expressões

abaixo até onde der:

- k) Q(y)
- 1) Q(0)
- m) Q(4)
- n) Q(1.5)

Repare que aqui estamos usando o conjunto {7,8,9}, que é finito... nos itens a, b, c, d vamos usar [7,9], que é infinito.

Dica:

$$\begin{array}{lll} Q(y) & = & (\forall x \in \{7, 8, 9\} \cdot y \leq f(x)) \\ Q(y) & = & (y \leq f(x))[x := 7] \\ & \wedge & (y \leq f(x))[x := 8] \\ & \wedge & (y \leq f(x))[x := 9] \\ & = & (y \leq f(7)) \wedge (y \leq f(8)) \wedge (y \leq f(9)) \\ & = & (y < 2) \wedge (y < 1) \wedge (y < 2) \end{array}$$

Exercício 4 (cont.)

Seja $P(y) = (\forall x \in [7, 9]. y \le f(x)),$ onde esta função f é a do slide 8.

Para cada uma das proposições abaixo mostre como visualizar o que ela quer dizer e diga se ela é verdadeira ou falsa.

- a) P(0.5)
- b) P(0.99)
- c) P(1)
- d) P(1.01)
- e) P(2)

Tudo a partir daqui vai ser reescrito.

Exercício 5 (antigo).

(Dica: faça os exercícios 6, 7 e 8, que são novos, antes deste!)

Calcule os dois conjuntos abaixo:

- a) $L = \{ y \in \mathbb{R} \mid \forall x \in [7, 9]. y \le f(x) \}$
- b) $U = \{ y \in \mathbb{R} \mid \forall x \in [7, 9]. f(x) \le y \}$

e:

- c) Represente o conjunto L no eixo y.
- d) Represente o conjunto U no eixo y.
- e) Represente o conjunto L usando notação de intervalos algo como: " $L = [42,99) \cup \{200\} \cup (420,+\infty)$ ".
- f) Represente o conjunto U usando notação de intervalos.

Exercício 6.

Sejam $B \subset \mathbb{R}$, f a função do slide 8, e:

$$C = \{ (b, f(b)) \mid b \in B \},$$

$$D = \{ f(b) \mid b \in B \},$$

$$D' = \{ d \in \mathbb{R} \mid \exists b \in B. f(b) = d \},$$

$$L = \{ \ell \in \mathbb{R} \cup \{-\infty, +\infty\} \mid \forall d \in D. \ell \leq d \},$$

$$U = \{ u \in \mathbb{R} \cup \{-\infty, +\infty\} \mid \forall d \in D. d \leq u \},$$

$$(\beta \notin o \text{ inf de } D) = (\beta \in L \text{ e } \forall \alpha \in L. \alpha \leq \beta),$$

$$(\gamma \notin o \text{ sup de } D) = (\gamma \in U \text{ e } \forall \delta \in U. \gamma \leq \delta).$$

Use o truque de "tipar as subexpressões" do exercício 3 pra tipar cada uma das subexpressões das 7 definições acima. Dica: você pode chamar $\mathbb{R} \cup \{-\infty, +\infty\}$ de " \mathbb{R} estendido" e os eixos x e y com os pontos $-\infty$ e $+\infty$ acrescentados de "eixo x estendido" e "eixo y estendido".

Improvise e discuta com os seus colegas!!!

Exercício 7.

Sejam $B = \{7, 8, 9\}$, f a função do slide 8, e:

$$C = \{ (b, f(b)) \mid b \in B \},$$

$$D = \{ f(b) \mid b \in B \},$$

$$D' = \{ d \in \mathbb{R} \mid \exists b \in B. f(b) = d \},$$

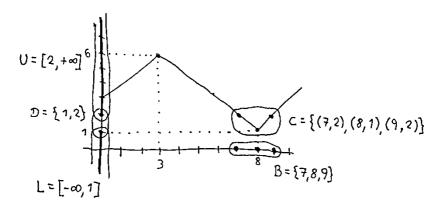
$$L = \{ \ell \in \mathbb{R} \cup \{-\infty, +\infty\} \mid \forall d \in D. \ell \leq d \},$$

$$U = \{ u \in \mathbb{R} \cup \{-\infty, +\infty\} \mid \forall d \in D. d \leq u \},$$

$$(\beta \notin o \text{ inf de } D) = (\beta \in L \text{ e } \forall \alpha \in L. \alpha \leq \beta),$$

$$(\gamma \notin o \text{ sup de } D) = (\gamma \in U \text{ e } \forall \delta \in U. \gamma \leq \delta).$$

- a) Calcule C, D, L e U e represente-os graficamente.
- b) A expressão ' β é o inf de D' é verdade para $\beta = 2$?
- c) A expressão ' β é o inf de D' é verdade para $\beta = 1$?
- d) A expressão ' β é o inf de D' é verdade para $\beta = 0$?



Dois jeitos de definir imagens de conjuntos

Fazendo $B = \{7, 8, 9\}$ nas definições do slide anterior obtemos:

$$D = \{ f(b) \mid b \in \{7, 8, 9\} \}$$

$$= \{ f(7), f(8), f(9) \}$$

$$= \{ y \in \mathbb{R} \mid y = f(7) \lor y = f(8) \lor y = f(9) \}$$

$$= \{ y \in \mathbb{R} \mid \exists x \in \{7, 8, 9\}. y = f(x) \}$$

$$= \{ d \in \mathbb{R} \mid \exists b \in \{7, 8, 9\}. d = f(b) \}$$

$$= D'$$

Isto vai valer para qualquer conjunto B, mesmo infinito.

Aplicação: digamos que duas pessoas estão tentando fazer o exercício 2b, e uma obteve F([2,4)) = [5,6] e a outra obteve F([2,4)) = (5,6]. Podemos testar se $5 \in \{ y \in \mathbb{R} \mid \exists x \in [2,4).f(x) = y \} = F([2,4))...$

Sups e infs em português

Dá pra definir sups e infs em português se a gente usar dois truques:

- 1) " \mathbb{R} estendido" vai ser $\mathbb{R} \cup \{-\infty, +\infty\}$,
- 2) "acima" e "abaixo" vão significar (temporariamente!) ' \geq ' e ' \leq '.

Imagine que a e b são pontos do eixo y.

"a está acima de b" vai querer dizer ' $a \ge b$ '.

"a está estritamente acima de b" vai querer dizer 'a > b'.

Repare que cada ponto de $\mathbb R$ estendido está "acima" de si mesmo.

Idem pra "abaixo" e "estritamente abaixo".

O sup de um conjunto D vai ser o ponto mais baixo dentre todos os pontos que estão acima de todos os pontos de D.

O inf de um conjunto D vai ser o ponto mais alto dentre todos os pontos que estão abaixo de todos os pontos de D.

Exercício 8.

Traduza para a linguagem do exercício 7:

- a) o ponto P está acima de todos os pontos de D
- b) o ponto Q está acima de todos os pontos de D
- c) o conjunto de todos os pontos de $\mathbb R$ estendido que estão acima de todos os pontos de D
- d) o conjunto de todos os pontos de $\mathbb R$ estendido que estão abaixo de todos os pontos de D
- e) o ponto mais baixo dentre todos os pontos de $\mathbb R$ estendido que estão acima de todos os pontos de D
- f) o ponto mais alto dentre todos os pontos de $\mathbb R$ estendido que estão abaixo de todos os pontos de D

Exercício 9.

Digamos que:

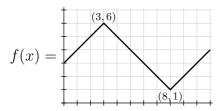
```
C = \{(b, f(b)) \mid b \in B\},\
D = \{f(b) \mid b \in B\},\
D' = \{d \in \mathbb{R} \mid \exists b \in B.f(b) = d\},\
L = \{\ell \in \mathbb{R} \cup \{-\infty, +\infty\} \mid \forall d \in D.\ell \leq d\},\
U = \{u \in \mathbb{R} \cup \{-\infty, +\infty\} \mid \forall d \in D.d \leq u\},\
(\beta \notin o \text{ inf de } D) = (\beta \in L \text{ e } \forall \alpha \in L.\alpha \leq \beta),\
(\gamma \notin o \text{ sup de } D) = (\gamma \in U \text{ e } \forall \delta \in U.\gamma \leq \delta).
```

Dá pra calcular L, U, e o inf e o sup de D só a partir do D... então vamos ignorar os conjuntos B e C neste exercício.

- a) Seja $D = (2,3) \cup (4,5)$. Calcule $L, U, \inf D, \sup D$.
- b) Seja $D = [2, 3] \cup [4, 5]$. Calcule $L, U, \inf D, \sup D$.
- c) Seja $D = \mathbb{R}$. Calcule $L, U, \inf D, \sup D$.
- d) Seja $D = \emptyset$. Calcule $L, U, \inf D, \sup D$.

Exercício 10.

Lembre que:



- a) Calcule $\sup(F([2,4]))$.
- b) Calcule $\inf(F([2,4]))$.
- c) Calcule $\sup(F([4,7]))$.
- d) Calcule $\inf(F([4,7]))$.
- e) Calcule $\sup(F([7,9]))$.
- f) Calcule $\inf(F([7, 9]))$.

Exercício 11.

Lembre que:

$$f(x) = \frac{(3.6)}{(8.1)}$$

Digamos que $P = \{1, 2, 4, 5, 6, 7, 9, 10\}$. Represente graficamente num gráfico só:

- a) $\sum_{i=1}^{N} \sup(F([a_i, b_i]))(b_i a_i),$
- b) a curva y = f(x),
- c) $\sum_{i=1}^{N} \inf(F([a_i, b_i]))(b_i a_i)$.

e verifique que você obteve algo bem parecido com a figura do slide 2.

Métodos de integração: nomes

$$[L] = \sum_{i=1}^{N} f(a_i)(b_i - a_i)$$

$$[R] = \sum_{i=1}^{N} f(b_i)(b_i - a_i)$$

$$[Trap] = \sum_{i=1}^{N} \frac{f(a_i) + f(b_i)}{2}(b_i - a_i)$$

$$[M] = \sum_{i=1}^{N} f(\frac{a_i + b_i}{2})(b_i - a_i)$$

$$[min] = \sum_{i=1}^{N} \min(f(a_i), f(b_i))(b_i - a_i)$$

$$[max] = \sum_{i=1}^{N} \max(f(a_i), f(b_i))(b_i - a_i)$$

$$[inf] = \sum_{i=1}^{N} \inf(F([a_i, b_i]))(b_i - a_i)$$

$$[sup] = \sum_{i=1}^{N} \sup(F([a_i, b_i]))(b_i - a_i)$$

Cada uma dessas fórmulas é um "método de integração". Todos esses "métodos" aparecem na página da Wikipedia, mas com outros nomes e usando partições em que todos os intervalos têm o mesmo comprimento.

Métodos de integração: nomes (2)

Todas as fórmulas do slide anterior supõem que estamos num contexto em que a partição P está definida. Se usamos elas com uma partição em subscrito, como em $[L]_{\{4,5,7\}}$, isso vai querer dizer que a partição P vai ser indicada no subscrito. Por exemplo:

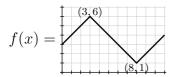
$$[L]_{\{4,5,7\}} = \sum_{i=1}^{N} f(a_i)(b_i - a_i) \qquad [L]_{\{6,7,8,9\}} = \sum_{i=1}^{N} f(a_i)(b_i - a_i)$$

$$= f(a_1)(b_1 - a_1) \qquad = f(a_1)(b_1 - a_1) + f(a_2)(b_2 - a_2)$$

$$= f(4)(5 - 4) + f(a_3)(b_3 - a_2) + f(5)(7 - 5) + f(7)(8 - 7) + f(8)(9 - 8).$$

Exercício 12.

Lembre que:



Em cada um dos itens abaixo represente graficamente num gráfico só a curva y = f(x) e os dois somatórios pedidos.

- a) $[\sup]_{\{1,10\}}, [\inf]_{\{1,10\}}$
- b) $[\sup]_{\{1,2,5,6,9,10\}}, [\inf]_{\{1,2,5,6,9,10\}}$
- c) $[\sup]_{\{1,2,4,5,6,7,9,10\}}, [\inf]_{\{1,2,4,5,6,7,9,10\}}$
- d) $[\max]_{\{1,10\}}$, $[\min]_{\{1,10\}}$
- e) $[\max]_{\{1,2,5,6,9,10\}}, [\min]_{\{1,2,5,6,9,10\}}$

Nossas partições preferidas

Agora eu vou definir uma notação pra partição que divide um intervalo em N subintervalos iguais:

$$[a,b]_N = \{a, a + \frac{b-a}{N}, a + 2\frac{b-a}{N}, \dots, b\}$$

Exercício 13.

Calcule:

- a) $[4, 6]_1$
- b) $[4, 6]_{2^3}$

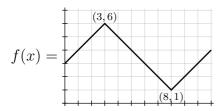
Dicas: $2^3 = 8$, e releia isto aqui:

http://angg.twu.net/LATEX/2021-1-C2-somas-1.pdf#page=16

Obs: mais tarde no curso você vai (ter que!) aprender a fazer as suas próprias definições...

Exercício 14.

Lembre que:



Em cada um dos itens abaixo represente graficamente num gráfico só a curva y = f(x) e os dois somatórios pedidos.

- a) $[\sup]_{[2,10]_{2^0}}$, $[\inf]_{[2,10]_{2^0}}$
- b) $[\sup]_{[2,10]_{2^1}}$, $[\inf]_{[2,10]_{2^1}}$
- c) $[\sup]_{[2,10]_{2^2}}$, $[\inf]_{[2,10]_{2^2}}$
- d) $[\sup]_{[2,10]_{2^3}}$, $[\inf]_{[2,10]_{2^3}}$

Aproximações por cima

Mais duas definições:

A melhor aproximação por cima para a integral de f na partição P é:

$$\overline{\int}_{P} f(x) \, dx = [\sup]_{P},$$

O limite das aproximações por cima pra integral de f no intervalo [a,b] é:

$$\overline{\int}_{x=a}^{x=b} f(x) dx = \lim_{k \to \infty} [\sup]_{[a,b]_{2^k}},$$

Esse limite também é chamado de a "integral por cima de f no intervalo [a, b]".

Aproximações por baixo

Mais duas definições:

A melhor aproximação por baixo para a integral de f na partição P é:

$$\underline{\int}_{P} f(x) \, dx = [\inf]_{P},$$

O limite das aproximações por baixo pra integral de f no intervalo [a,b] é:

$$\underline{\int_{x=a}^{x=b} f(x) dx} = \lim_{k \to \infty} [\inf]_{[a,b]_{2^k}},$$

Esse limite também é chamado de a "integral por baixo de f no intervalo [a, b]".

A definição de integral

A nossa definição de $\int_{x=a}^{x=b} f(x) dx$ vai ser:

$$\int_{x=a}^{x=b} f(x) dx = \int_{x=a}^{x=b} f(x) dx \stackrel{\Downarrow}{=} \int_{x=a}^{x=b} f(x) dx$$

se a igualdade marcada com $\stackrel{\checkmark}{=}$ for verdade.

Se a igualdade ' $\stackrel{\bullet}{=}$ ' for falsa vamos dizer que: "f(x) não é integrável no intervalo [a,b]", " $\int_{x=a}^{x=b} f(x) dx$ não está definida", ou " $\int_{x=a}^{x=b} f(x) dx$ dá erro".

(Compare com $\frac{42}{0}$, que também "não está definido", ou "dá erro"...)

Como esses limites funcionam?

Em Cálculo 1 você viu que algumas funções não são deriváveis. Agora nós vamos ver que algumas funções não são integráveis. O melhor modo de visualizar isso é usando estas definições:

$$\underline{\int}_{P} f(x) dx = \overline{\int}_{P} f(x) dx - \underline{\int}_{P} f(x) dx$$

$$\underline{\int}_{x=a}^{x=b} f(x) dx = \overline{\int}_{x=a}^{x=b} f(x) dx - \underline{\int}_{x=a}^{x=b} f(x) dx$$

Exercício 15.

a) Verifique que no exercício 14 você desenhou $\overline{\underline{\int}}_{[2,10]_{2^0}} f(x) \, dx$, $\overline{\underline{\int}}_{[2,10]_{2^1}} f(x) \, dx$, $\overline{\underline{\int}}_{[2,10]_{2^2}} f(x) \, dx$, e $\overline{\underline{\int}}_{[2,10]_{2^3}} f(x) \, dx$.

b) Calcule a área dessas quatro diferenças. Veja o vídeo!

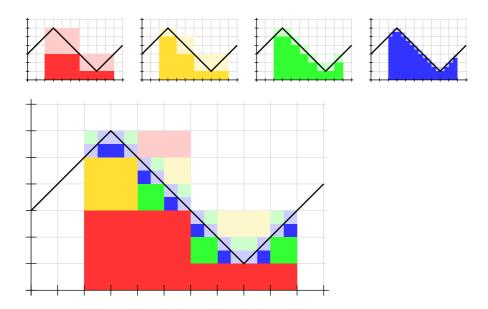
Exercício 16.

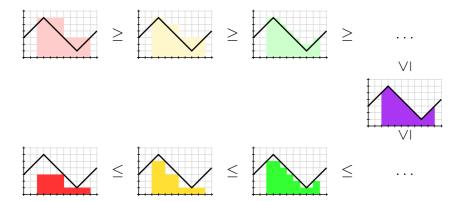
Identifique nas figuras dos próximos dois slides:

$$\overline{\int}_{[2,10]_{2^{1}}} f(x) dx, \quad \overline{\int}_{[2,10]_{2^{2}}} f(x) dx, \quad \overline{\int}_{[2,10]_{2^{3}}} f(x) dx, \quad \overline{\int}_{[2,10]_{2^{4}}} f(x) dx,
\underline{\int}_{[2,10]_{2^{1}}} f(x) dx, \quad \underline{\int}_{[2,10]_{2^{2}}} f(x) dx, \quad \underline{\int}_{[2,10]_{2^{3}}} f(x) dx, \quad \underline{\int}_{[2,10]_{2^{4}}} f(x) dx,
\underline{\overline{\int}_{[2,10]_{2^{1}}} f(x) dx, \quad \underline{\overline{\int}_{[2,10]_{2^{2}}} f(x) dx, \quad \underline{\overline{\int}_{[2,10]_{2^{3}}} f(x) dx, \quad \underline{\overline{\int}_{[2,10]_{2^{4}}} f(x) dx,
\underline{\overline{\int}_{[2,10]_{2^{1}}} f(x) dx, \quad \underline{\overline{\int}_{[2,10]_{2^{2}}} f(x) dx, \quad \underline{\overline{\int}_{[2,10]_{2^{4}}} f(x) dx, \quad \underline{\overline{\int}_{[2,10]_{2^{4}}} f(x) dx,$$

$$\int_{x=2}^{x=10} f(x) \, dx.$$

Dica: os " $\underline{\int}_P \dots dx$ "s são feitos de "retângulos flutuando no ar", não de retângulos cujas bases estão em y=0.

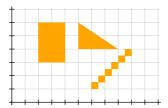




Exercício 17: áreas no olhômetro

A partir daqui eu vou supor que todo mundo sabe calcular determinadas áreas "no olho" — contando quadradinhos, fazendo "base \cdot altura" (pra retângulos), ou fazendo "(base \cdot altura)/2" (pra triângulos)...

Tente calcular a área da figura abaixo de cabeça.



Se você não conseguir PEÇA AJUDA E DICAS NO CANAL DO TELEGRAM URGENTE!!!!!!!!!!!!!

Funções "claramente integráveis"

Lembre que uma função f(x) é integrável entre x = a e x = b se e só se:

$$\lim_{k \to \infty} \left(\overline{\int}_{[a,b]_{2^k}} f(x) \, dx \right) = 0$$

Seja
$$d_k = \left(\overline{\underline{\int}}_{[a,b]_{>k}} f(x) dx\right)$$
; o 'd' é de "diferença".

Cada d_k pode ser interpretado de dois jeitos: como uma figura feita de 2^k retângulos "flutuando no ar", ou como a área total desses retângulos.

Funções "claramente integráveis" (2)

As primeiras 4 figuras do exercício 16 contêm representações gráficas de d_1, d_2, d_3, d_4 — são as áreas numa cor mais clara — e se explicarmos claramente pro leitor que é pra interpretar cada uma daquelas figuras como a área da parte mais clara delas nós podemos dizer que:

$$(d_1, d_2, d_3, d_4, \ldots) = (20, 14, 8, 4, \ldots)$$

E se o nosso leitor tiver prática suficiente ele vai conseguir visualizar sozinho o que são d_5, d_6, \ldots e ele vai conseguir ver que $\lim_{k\to\infty} d_k = 0$.

Funções "claramente integráveis" (3)

Alguns livros têm demonstrações completas de que toda função $f:[a,b]\to\mathbb{R}$ contínua é integrável — mesmo funções contínuas bem esquisitas, como essa aqui: https://en.wikipedia.org/wiki/Weierstrass_function

Essa demonstração é bem difícil — mesmo o Pierluigi Beneveri não faz ela inteira nas notas de aula dele... A demonstração usa continuidade uniforme:

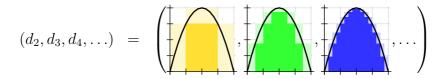
https://en.wikipedia.org/wiki/Uniform_continuity

...e a gente só entende as contas cheias de desigualdades que aparecem na demonstração se a gente conseguir visualizar o que cada somatório e cada desigualdade dela "quer dizer"... então vamos nos concentrar nas visualizações, deixem as contas horríveis pra depois.

Funções "claramente integráveis" (4)

A nossa função preferida láááá do início do curso — que era $f(x) = 4 - (x-2)^2$ — é "claramente integrável"...

Olhe pras figuras abaixo e convença-se de que $\lim_{k\to\infty} d_k = 0$:



Truque: escolha um d_k . Todos os retângulos dele têm a mesma largura; chame-a de w. A altura de cada retângulo é no máximo 4w — porque $\forall x \in [0,4].|f'(x)| \leq 4$.

Funções escada

Uma função escada é uma função definida por casos que é constante em cada um dos casos, e em que todos os casos são da forma " $\langle constante \rangle$ quando $x \in \langle intervalo \rangle$ ". Por exemplo,

$$f(x) = \begin{cases} 1 & \text{quando } x \in (-\infty, 2], \\ 2 & \text{quando } x \in (2, 3), \\ -1 & \text{quando } x \in [3, 3], \\ 0 & \text{quando } x \in (3, 4], \\ 2 & \text{quando } x \in (4, +\infty) \end{cases}$$

Note que também poderíamos ter escrito $x \le 2$ ao invés de $x \in (-\infty, 2]$, x = 3 ao invés de $x \in [3, 3]$, etc... Ah, e o número de casos tem que ser finito.

Exercício 18.

Toda função escada é integrável.

Neste exercício você vai verificar os detalhes disto só pra esta função escada bem simples:

$$f(x) = \begin{cases} 1 & \text{quando } x \leq 1, \\ 3 & \text{quando } 1 < x \end{cases}$$

Seja
$$d_k = \overline{\int}_{[1,4]_{2k}} f(x) dx$$
.

- a) Represente graficamente d_k para k = 0, 1, 2, 3, 4.
- b) Cada um destes ' d_k 's tem exatamente um retângulo com altura diferente de 0. Diga a largura e a altura dele.
- c) Calcule d_{10} (como um número).

A função de Dirichlet

A função de Dirichlet é definida por:

$$f(x) = \begin{cases} 0 & \text{quando } x \in \mathbb{Q}, \\ 1 & \text{quando } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$

Ela não tem um nome oficial, então vamos chamá-la de 'f' nos próximos slides.

O gráfico dela alterna freneticamente entre y = 0 e y = 1.

Lembre que:

os números racionais são os cuja expansão decimal é "periódica", e os irracionais são os que não são assim; entre cada dois racionais diferentes há um irracional, e entre cada dois irracionais diferentes há um racional...

A função de Dirichlet (2)

Lembre que podemos obter um irracional entre, digamos, $a=\frac{10}{7}=1.42857\underline{142857}$ e $b=\frac{1285715}{900000}=1.42857\underline{2}$, modificando a expansão decimal de um dele e trocando-a pela expansão decimal de $\sqrt{2}$ a partir de um certo ponto... Por exemplo:

$$\sqrt{2}$$
 = 1.41421356237...
 b = 1.42857222222...
 c = 1.42857156237...
 a = 1.42857142857...

Neste caso temos a < c < b, com $a, b \in \mathbb{Q}$ e $c \in \mathbb{R} \setminus \mathbb{Q}$. Dá pra fazer algo parecido pra obter um racional entre dois irracionais.

A função de Dirichlet (3)

Dá pra desenhar o gráfico da função de Dirichlet assim:

$$f(x) = \begin{cases} 0 & \text{quando } x \in \mathbb{Q}, \\ 1 & \text{quando } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} =$$

Repare que isso só funciona porque o desenho é claramente ambíguo... um leitor "normal" não consegue descobrir no olho quais são as coordenadas da bolinhas em y = 1 e em y = 0, então ele é obrigado a olhar pra definição formal da f(x)...

e aí quando ele entende a definição formal da f(x) ele descobre que o desenho quer dizer "muitas bolinhas em y=1, muito próximas umas das outras, e muitas bolinhas em y=0 muito próximas das outras"...

...e ele entende que esse "muitas" quer dizer "infinitas".

Exercício 19.

A função de Dirichlet é um dos exemplos mais simples de uma função que não é integrável.

Sejam $\underline{f}(x)$ a função de Dirichlet, e $d_k = \overline{\underline{\int}}_{[0,1]_{2^k}} f(x) dx$.

- a) Represente graficamente d_0, d_1, d_2, d_3 .
- b) Calcule no olhômetro o limite $\lim_{k\to\infty} d_k$. (Dica: esse limite não dá zero...)
- c) Represente graficamente $[\max]_{[0,1]_{2^2}}$ e $[\min]_{[0,1]_{2^2}}$. (Dica: o método do máximo "não enxerga" os pontos com y=1...)

Propriedades da integral: trailer

No próximo PDF nós vamos começar a ver as propriedades da integral — ou, mais precisamente, as propriedades da operação $\int_{x=a}^{x=b} f(x) dx$ que nós definimos como um limite complicado. Nós vamos ver 1) que ela realmente calcula áreas, 2) que em certas situações "integrar" e "derivar" são operações inversas uma da outra, 3) que em certas situações podemos usar "antiderivadas" pra calcular integrais bem rápido.

No semestre passado metade dos alunos não entenderam nada disso, e numa questão em que eu pedia pra eles calcularem a área dessa figura aqui de dois jeitos diferentes eles concluiram que a área dessa figura era 4...

Não seja como eles.