
Grothendieck Topologies for Children

Eduardo Ochs

May 20, 2021

Abstract

The paper “Planar Heyting Algebras for Children” ([PH1]) showed
how to use Planar Heyting Algebras to visualize the truth-values and
the operations of Propositional Calculus in certain toposes; the “...for
children” of its title means: “we will start from some motivating exam-
ples (‘for children’) that are easy to visualize, and then go the general
case (‘for adults’) — but there are precise techniques for working on
the case ‘for children’ and on the case ‘for adults’ in parallel”. These
techniques are described in detail in [FavC]; see also sec.15.

In these notes we will use these techniques to visualize Grothendieck
topologies — first in the “archetypal” case of the canonical Grothendieck
topology on a certain finite topological space, and then we will gener-
alize that to arbitrary Grothendieck topologies on certain finite posets,
that we will treat as “ex-topologies” (sec.11).

This is a working draft! It is still messy and incomplete at many
points! I want/need to rewrite several sections of it and reorder ev-
erything!

The latest version is at:
http://angg.twu.net/math-b.html#2021-groth-tops
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1 Introduction
One of the key ideas for understanding sheaves is Grothendieck topologies.

They are defined by a long zig-zag of steps in which the ‘zig’s are like “take
this familiar construction”, the ‘zag’s are like “here is the right generalization
of the previous step”, and the reasons for these choices of generalizations only
become clear many steps afterwards — when we define sheaves in several
different ways. We will use some of the conventions in [FavC] to compare
these different definitions of sheaves — mainly these three conventions, from
[FavC, sec.2]:

(CPSh) A particular case of a diagram D is drawn with the same
shape as D.

(CNSh) A translation of a diagram D to another notation is drawn
with the same shape as D.

(CFSh) The image by a functor of a diagram D is drawn with the
same shape as D.

Here is one example of a shape that we will use often. Start with a topol-
ogy O(X). The topos SetO(X)op has objects Ω and Jcan, with an inclusion
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Jcan ↪→ Ω. For each open set U ∈ O(X) the set Ω(U) is the set of “sieves on
U”, and the subset Jcan(U) ⊂ Ω(U) is the set of “covering sieves on U”. The
elements of the set Jcan(U) are called “covering sieves (on U)”, and denoted
by letters like U ; each covering sieve is a set of open sets, i.e., of elements of
O(X), and they are denoted by letters like V . We will draw all — or, more
honestly, most of — this information as:

O(X)

∈

V ∈ U ∈ Jcan(U) ⊂ Ω(U)(
our

topology

)

∈ an
open
set

 ∈

 a
covering

sieve

 ∈


all

covering
sieves
on U

 ∈

 all
sieves
on U


In Section 11 we will generalize this to:

D

∈

v ∈ U ∈ J(u) ⊂ Ω(u)(
our ex-

topology

)

∈an ex-
open
set

 ∈

 a
J-covering

sieve

 ∈


all

J-covering
sieves
on u

 ∈

 all
sieves
on u


We will also use this shape to compare our notational conventions with

the ones in [LM92] and [Lin14], and to show our conventions for drawing
particular cases.

Grothendieck Topologies are not only hard to define. They are also very
hard to visualize, even when we start with finite topologies like the Planar
Heyting Algebras of [PH1], that ought to yield nice archetypal cases — in
the sense of [IDARCT, section 16]; see also [Che04]. Let me sketch why.
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Take a topological space (X,O(X)). If we follow the ideas in [PH1] this
O(X) will be a planar poset (I’ll refrain from mentioning lattices at this
point!), with the empty set ∅ as its bottom element, and the X at its top.
Choose an open set U ∈ O(X); O(U) will be a sub-poset of O(X). A subset
S ⊆ O(U) is a sieve on U when it is closed downwards; if we write D(O(U))
for

D(O(U)) = { S ⊆ O(U) | S is closed downwards }

then the set of sieves on U is exactly D(O(U)).
We say that a sieve S ∈ D(O(U)) covers U when

⋃
S = U . The set

of covering sieves on U contains the top element of D(O(U)), and is closed
upwards and by finite intersections — so the set of covering sieves on U is a
filter on D(O(U)), and if we write F(P) for the set of filters on a poset P then
the set of covering sieves on U is a element of F(D(O(U)). The canonical
Grothendieck topology on a topological space (X,O(X)) is an operation Jcan
that chooses for each U ∈ O(X) a filter Jcan(U) ∈ F(D(O(U))), and to define
Grothendieck topologies in general we need to understand some properties
of this operation Jcan, and the generalize them in the right way.

We will discuss ways to draw posets, topologies, down-sets, and filters in
sections 4 and 5. In section 6 we will see how to draw our first Grothendieck
topology, and in sections 7 and 10 we will show how to define Grothendieck
topologies.
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2 The hierarchy
The definition of a Grothendieck topology on a topological space (X,O(X))

uses elements and subsets a lot. It also uses lots of linguistic constructs like
“a J-covering sieve on U is...”, and lots of notational conventions on the de-
fault meanings and the default types of some letters and fonts. We need to
extend the conventions in [FavC] a bit to handle that; here is a first attempt.
Let’s take this (incomplete) version on the definition:

• Fix a topological space (X,O(X)).

• Take any element U ∈ O(X). This U is an open set.

• The set Ω(U) is the set of sieves on U , defined as Ω(U) = D(O(U));
i.e., a sieve S on U is a down-set S ∈ D(O(U)) = Ω(U).

• The set J(U) ⊂ Ω(U) is the set of J-covering sieves on U . We say that
a sieve U on U is J-covering when U ∈ J(U).

• Every element V of a sieve S is an open set of X; every element V of
a covering sieve U is an open set of X.

We can organize this in two parallel diagrams, as:

U ∈ O(X)

⊂

V ∈ S ∈ Ω(U) = D(O(U)) ⊂ P(O(U))

⊂

V ∈ U ∈ J(U)

 an
open
set

 ∈
(

our
topology

)

⊂ an
open
set

 ∈
(

a
sieve

)
∈

 all
sieves
on U

 =

all down-
sets of
O(U)

 ⊂

 all
subsets
of O(U)



⊂ an
open
set

 ∈

 a
covering

sieve

 ∈


all J-

covering
sieves
on U


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I guess that some experimental extensions to some proof assistants like
Agda — that supports unicode characters in symbol names — may have
ways to attribute default types for some names, but at this moment I don’t
even know where to look for. All hints and pointers are welcome!

The diagrams above shows a certain hierarchy between our symbols: go-
ing right or going upwards in practically all cases means moving to something
bigger. We won’t use diagrams with that shape much — instead we will use
the smaller version below:

O(X)

∈

V ∈ U ∈ J(U) ⊂ Ω(U)(
our

topology

)

∈ an
open
set

 ∈

 a
covering

sieve

 ∈


all J-

covering
sieves
on U

 ∈

 all
sieves
on U


We will call that shape “the hierarchy”, and will often use it to show

examples of particular cases, by also drawing a copy in which the O(X) is
replaced by a particular topology, U is replaced by a particular open set in
O(X), and so on.
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3 Davey and Priestley
The book [DP02] is a standard reference on lattices; I guess that its way

of drawing lattices should be considered standard, too. On pages 20–21 it
defines and draws the ordered set O(P ) of down-sets of a poset P like this:

N =
a =

b = = c

= d

O(N) =

{a, b, c, d} =

↓b = {a, b, d} =

{a, d} =

↓a = {a} =

∅ =

= {a, c, d}
= {c, d} = ↓c

= {d} = ↓d

The book usually draws the “join-irreducible” elements of lattices using
“shaded dots”; see its page 54. Here is an example from the book:

2021groth-tops-children May 20, 2021 10:47



CONTENTS 8

And here is a bigger example:

O




=




We will pronounce “O(P )” as “the order topology on the poset P”.

4 Order topologies
Most of the material in [PH1] was tested on “real children”, as explained

in this part of its introduction:

This paper can be seen as part of bigger projects in at least the
two ways described above, but it was also written to be as read-
able and as self-contained as possible. In 2016 and 2017 I had
the opportunity to test some of the ideas here on “real children”,
in the sense of “people with little mathematical knowledge and
little mathetical maturity”. I gave a seminar course about Logic
and λ-calculus that had no prerequisites, and that was mostly
based on exercises that the students would try to solve together
by discussing on the whiteboard; it was mostly attended by Com-
puter Science students who had just finished a course on Discrete
Mathematics (...)

They found the notation for order topologies below much easier to start
with.
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In section 13 of [PH1] we defined H as the “house” poset at the left here
(see also section 1 for the “reading order” and section 2 for the “black pawns
moves”):

H =

1

2 3

4 5

↙ ↘

↓ ↓
(O(H),⊂1) =

1
1 1
1 1

0
1 1
1 1

0
1 0
1 1

0
0 1
1 1

0
1 0
1 0

0
0 0
1 1

0
0 1
0 1

0
0 0
1 0

0
0 0
0 1

0
0 0
0 0

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

Here we will prefer this slanted version of the house DAG, that is a 2-
column graph ([PH1, section 14]):

H =


1_

2_

3_

_1

_2

 (O(H),⊂1) =

32

20

21

22

10

11

12

00

01

02

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

but we will sometimes use the unslanted for drawing subsets of H: we will
draw

0
1 0
1 1

instead of:
1
1
0

1
0 .

The ZHA with 10 elements at the right is the “bottle” poset, and we will
call it B. So:

O(H) = B.
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5 Down-sets, up-sets, and filters
We will define “down-sets”, “up-sets”, and “filters” on posets almost in

the standard way, i.e., as in [DP02]; but we need to take into account that
it H the arrows go down, and in B they go up. So: if P is a poset with
underlying set P0,

• A subset D ⊆ P0 is a down-set of P iff

∀p, q ∈ P0. (p above q) →

p ∈ D
↓

q ∈ D

 ,

• A subset U ⊆ P0 is an up-set of P iff

∀p, q ∈ P0. (p above q) →

p ∈ U
↑

q ∈ U

 ,

• If P has a top element > and a binary meet operation ‘∧’, then a subset
F ⊆ P0 is a filter iff: 1) F is an up-set of P, 2) > ∈ F , 3)

∀p, q ∈ P0.

p ∈ F and q ∈ F
↓

p ∧ q ∈ F

 .

We will define D(P), U(P), and F(P) as:

D(P) = {D ⊆ P0 | D is a down-set of P },
U(P) = {U ⊆ P0 | U is an up-set of P },
F(P) = {F ⊆ P0 | U is a filter in P },

and if S ∈ P0 we will denote the down-set of P generated by S as ↓S or
↓PS, and the up-set of P generated by S as ↑S or ↑PS. When p ∈ P0 we
will sometimes write ↓{p} as just ↓p, and ↑{p} as just ↑p.

2021groth-tops-children May 20, 2021 10:47



CONTENTS 11

Here are some examples:
0

0 0
1 1

∈ D(H) but 0
0 0
1 1

6∈ U(H),

1
0 1
0 0

6∈ D(H) but 1
0 1
0 0

∈ U(H),

↓ 0
1 1
0 0

=
0

1 1
1 1

, ↑ 0
1 1
0 0

=
1

1 1
0 0

,

1
1

1 1
1 0 0
0 0
0

∈ U(B) but
1
1

1 1
1 0 0
0 0
0

6∈ F(B),

1
1

1 1
1 1 0
1 0
0

∈ F(B).

↓H 2_ =
0

1 0
1 0

= 20,

↓B ↓H 2_ = ↓B 20 = {20, 10, 00} =
0
0

0 0
1 0 0
1 0
1

,

20 ∩ 11 =
0

1 0
1 0

∩ 0
0 0
1 1

=
0

0 0
1 0

= 10,

20 ∪ 11 =
0

1 0
1 0

∩ 0
0 0
1 1

=
0

1 0
1 1

= 21,

⋃ 0
0

0 0
1 1 1
0 0
0

=
0

1 0
1 0

∪ 0
0 0
1 1

∪ 0
0 1
0 1

=
0

1 1
1 1

= 22,

↓
⋃ 0

0
0 0

1 1 1
0 0
0

= ↓ 22 =
0
1

1 1
1 1 1
1 1
1

,

↓
0
0

0 0
1 1 1
0 0
0

=
0
0

0 0
1 1 1
1 1
1

.
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And here are some notations for sets of down-sets:[ 0
0

0 ?
0 ? 1
1 1
1

]
= {U ∈ O(B) | U is of the form

0
0

0 ?
0 ? 1
1 1
1

}

= {U ∈ O(B) |
0
0

0 0
0 0 1
1 1
1

⊆ U ⊆
0
0

0 1
0 1 1
1 1
1

}

=

{ 0
0

0 0
0 0 1
1 1
1

,
0
0

0 0
0 1 1
1 1
1

,
0
0

0 1
0 1 1
1 1
1

}
[ · ·· ?· ? 1

1 1
1

]
= {U ∈ O(12) | U is of the form

· ·· ?· ? 1
1 1
1

}

= {U ∈ O(12) |
· ·· 0· 0 1
1 1
1

⊆ U ⊆
· ·· 1· 1 1
1 1
1

}

=

{ · ·· 0· 0 1
1 1
1

,
· ·· 0· 1 1
1 1
1

,
· ·· 1· 1 1
1 1
1

}
= { ↓{10, 02}, ↓{11, 02}, ↓12 }

Note that { ↓{10, 02}, ↓{11, 02}, ↓12 } is an up-set, a filter, and a
principal filter. More precisely,

{ ↓{10, 02}, ↓{11, 02}, ↓12 } ⊆ D(O(12)),
{ ↓{10, 02}, ↓{11, 02}, ↓12 } ∈ U(D(O(12))),
{ ↓{10, 02}, ↓{11, 02}, ↓12 } ∈ F(D(O(12))),
{ ↓{10, 02}, ↓{11, 02}, ↓12 } = ↑D(O(12))(↓{10, 02}).

The ‘·’s in this notation mean “this point is out of the domain”. They
help to indicate that we are in D(O(12)), not in D(O(22)) or D(O(32)).

6 An example
If you know more than the basics of Topos Theory then the following

figures should make a lot of sense... if you don’t then it’s better to start from
the definitions in the next section.

Remember that O(H) = B. The classifier object of the topos SetO(H)op is
a functor Ω : O(H)op → Set whose action on objects takes each U ∈ O(H)
to O(U). Using the notations from the previous section and the trick for
“drawing functors as objects” from [FavC, section 7.12], we have:
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Ω =



[ ?
?

? ?
? ? ?
? ?
?

]
[ ·

?
? ?

? ? ?
? ?
?

]
[ · ·

? ·
? ? ·
? ?
?

] [ · ·· ?· ? ?
? ?
?

]
[ · ·· ·

? · ·
? ·
?

] [ · ·· ·· ? ·
? ?
?

] [ · ·· ·· · ?· ?
?

]
[ · ·· ·· · ·

? ·
?

] [ · ·· ·· · ·· ?
?

]
[ · ·· ·· · ·· ·

?

]

↘

↙ ↘

↙ ↘ ↙ ↘

↘ ↙ ↘ ↙

↘ ↙


(Hint: compare the drawing for Ω above with the one in section 12)
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And the canonical Grothendieck topology in SetO(H)op is:

Jcan =



[ 1
1

1 1
1 1 1
1 1
1

]
[ ·

?
? ?

1 ? 1
1 1
1

]
[ · ·

? ·
1 ? ·
1 1
1

] [ · ·· ?· ? 1
1 1
1

]
[ · ·· ·

1 · ·
1 ·
1

] [ · ·· ·· ? ·
1 1
1

] [ · ·· ·· · 1· 1
1

]
[ · ·· ·· · ·

1 ·
1

] [ · ·· ·· · ·· 1
1

]
[ · ·· ·· · ·· ·

1

]

↘

↙ ↘

↙ ↘ ↙ ↘

↘ ↙ ↘ ↙

↘ ↙


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The morphism > : 1 ↪→ Ω in this topos is the inclusion map that goes
from this terminal object to the Ω that we have just defined:

1 =



[ 1
1

1 1
1 1 1
1 1
1

]
[ ·

1
1 1

1 1 1
1 1
1

]
[ · ·

1 ·
1 1 ·
1 1
1

] [ · ·· 1· 1 1
1 1
1

]
[ · ·· ·

1 · ·
1 ·
1

] [ · ·· ·· 1 ·
1 1
1

] [ · ·· ·· · 1· 1
1

]
[ · ·· ·· · ·

1 ·
1

] [ · ·· ·· · ·· 1
1

]
[ · ·· ·· · ·· ·

1

]

↘

↙ ↘

↙ ↘ ↙ ↘

↘ ↙ ↘ ↙

↘ ↙


The meaning of “inclusion map” here should be obvious, but there is

a formal definition of it in these notes: [Och20]. Note that we have these
inclusions in SetO(H)op :

1 ↪→ Jcan ↪→ Ω .
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7 Defining Grothendieck topologies
Here’s how to define Grothendieck topologies on a category O(X).

1. We start with a topological space (X,O(X)), and with the category
O(X) — the poset of open sets of X, in which an arrow V → U exists
iff V ⊆ U . We will define Grothendieck topologies “on O(X)” now,
and generalize this later.

2. For every U ∈ O(X) the maximal sieve on U is the set t(U) = O(U).

3. A sieve on U is a subset S ⊆ t(U) that is closed downwards.

4. We write Ω(U) for the set of sieves on U .

5. This Ω is a functor Ω : O(X)op → Set. Its definition by a diagram (in
the sense of [FavC, section 5.2]) is:

U Ω(U)� //U

V

OO Ω(U)

Ω(V )
��

� //

V Ω(V )� //

O(X)
O(X)op Set//

S

S ∩ O(V )

_

��

6. We say that a sieve S on U covers U iff this holds:
⋃
S = U .

7. We write Jcan(U) for the set of sieves on U that cover U . Note that
Jcan(U) ⊆ Ω(U).

8. This Jcan is a functor Jcan : O(X)op. Its definition by a diagram is

U Ω(U)� //U

V

OO Ω(U)

Ω(V )
��

� //

V Ω(V )� //

O(X)
O(X)op Set//

S

S ∩ O(V )

_

��
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9. This Jcan is a subfunctor of Ω: we have a natural transformation i :
Jcan ↪→ Ω in which each map i(U) : Jcan(U) ↪→ Ω(U) is an inclusion in
Set.

10. We call this functor Jcan : O(X)op → Set the canonical Grothendieck
topology on O(X), or “on (the topological space) X”.

11. For each U ∈ O(X) the corresponding Jcan(U) is a filter. More pre-
cisely: each sieve S on U is a down-set of O(U); in the notation of
section sss, S ∈ D(O(U)); so Jcan(U) ⊆ D(O(U)). And:

(a) The top element of D(O(U)), t(U), is a covering sieve on U , so
t(U) ∈ Jcan(U).

(b) If A and B are sieves on U and A covers U , then B also covers U .
This means that Jcan(U) is closed upwards, and so Jcan(U) is an
up-set: Jcan(U) ∈ U(D(O(U))).

(c) If A and B are covering sieves on U then A∩B is also a covering
sieve on U . This means that Jcan(U) is closed by binary meets,
and so Jcan(U) obeys all the conditions for being a filter: Jcan(U) ∈
F(D(O(U))).

(d) The intersection
⋂
Jcan(U) is a sieve on U that is “below” all

covering sieves U ∈ Jcan(U); more precisely, for every U ∈ Jcan(U)
we have

⋂
Jcan(U) ⊆ U . This means that the filter Jcan(U) is

contained in the principal filter ↑D(O(U))

⋂
Jcan(U).

(e) When O(X) is a finite set all the ‘O(U)’s and ‘D(O(U))’s are
finite sets. In this case each Jcan(U) is closed by arbitrary meets,
and

⋂
Jcan(U) ∈ Jcan(U). Each Jcan(U) is a principal filter, and

Jcan(U) = ↑D(O(U))

⋂
Jcan(U).

12. This Jcan obeys the properties hasmaxJcan , stabJcan , and transJcan , de-
scribed in section 8.

13. We define the Grothendieck topologies on O(X) as the subfunctors
J ↪→ Ω that obey the properties hasmaxJ , stabJ , and transJ .

14. The properties hasmaxJ , stabJ , and transJ imply that each J(U) con-
tains the top element t(U) and is closed upwards and by binary meets;
so each J(U) is a filter on D(O(U)), i.e., J(U) ∈ F(D(O(U))).
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8 The properties hasmaxJ, stabJ, and transJ

This is the definition of a Grothendieck topology on an arbitrary category,
taken from [LM92, page 110]:

Definition 1. A Grothendieck Topology on a category C is a
function J which assigns to each object C of C a collection J(C)
of sieves on C, in such a way that:

1. The maximal sieve tC = { f | cod(f) = C } is in J(C);
2. (stability axiom) is S ∈ J(C), then h∗(S) ∈ J(D) for any

arrow h : D → C;
3. (transitivity axiom) if S ∈ J(C) and R is any sieve on C

such that h∗(S) ∈ J(D) for all h : D → C in S, then
R ∈ J(C).

It follows these notational conventions:

C
SetC

op

(SetC
op

)1

∈

h ∈ S ∈ J(C) ⊂ Ω(C)(
a small

category

)
(

our
topos

)
(

its
morphisms

)

∈(
a

morphism

)
∈

 a
J-covering

sieve

 ∈


all

J-covering
sieves
on C

 ∈

 all
sieves
on C


We will translate that definition to our definition of a Grothendick Topol-

ogy on a topological space in two steps.
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This is the first step of the translation — note that here the sieves are
still collections of arrows, not collections of open sets:

Definition 1′. A Grothendieck Topology on a category O(X) is
a function J which assigns to each object U of O(U) a collection
J(U) of sieves on U , in such a way that:

1. The maximal sieve t(U) = { f | cod(f) = U } is in J(U);
2. (stability axiom) is U ∈ J(U), then h∗(U) ∈ J(V ) for any

arrow h : V → U ;
3. (transitivity axiom) if U ∈ J(U) and S is any sieve on U

such that h∗(S) ∈ J(V ) for all h : V → U in U , then
S ∈ J(U).

The definition above follows these notational conventions:

O(X)

SetO(X)op

(SetO(X)op)1

∈

h ∈ U ∈ J(U) ⊂ Ω(U)(
a

topology

)
(

our
topos

)
(

its
morphisms

)

∈(
a

morphism

)
∈

 a
J-covering

sieve

 ∈


all

J-covering
sieves
on C

 ∈

 all
sieves
on C


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This is the second step of the translation. Here the sieves becomes col-
lections of open subsets, instead of collections of morphisms:

Definition 1′′. A Grothendieck Topology on a category O(X) is
a function J which assigns to each object U of O(U) a collection
J(U) of sieves on U , in such a way that:

1. The maximal sieve t(U) = {V ∈ O(X) | V ⊆ U } is in
J(U);

2. (stability axiom) is U ∈ J(U), then (V ⊆ U)∗(U) ∈ J(V )
for any open set V ∈ O(U);

3. (transitivity axiom) if U ∈ J(U) and S is any sieve on U
such that (U ⊆ V )∗(S) ∈ J(V ) for all V ∈ O(U) in U , then
S ∈ J(U).

Here are its notational conventions, in the same shape as before:

O(X)

∈

V ∈ U ∈ J(U) ⊂ Ω(U)(
our

topology

)

∈ an
open
set

 ∈

 a
covering

sieve

 ∈


all

covering
sieves
on U

 ∈

 all
sieves
on U


Many very important details from Definitions 1, 1′, and 1′′ were left out

of these L-shaped diagrams, so let’s create something more detailed — in two
steps. In the first one we will translate the three conditions to something
closer to first-order logic, but with some of the implications being drawn
vertically to stress what is “above” and what is “below”, following that the
convention that bigger open sets are above and small ones are below. We get
this.
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This is Definition 1,

hasmaxJ := (∀C ∈ C. t(C) ∈ J(C))

stabJ :=


∀h : D → C.
∀S ∈ Sieves_on(C). S ∈ J(C)

↓
h∗(S) ∈ J(D)




transJ :=


∀C ∈ C.
∀S ∈ J(U).
∀R ∈ Sieves_on(U). (R ∈ J(C))

↑
∀(h : D → C) ∈ S. (h∗(R) ∈ J(D))




And this is Definition 1′′:

hasmaxJ := (∀U ∈ O(X).t(U) ∈ J(U))

stabJ :=


∀V ⊆ U.
∀U ∈ Sieves_on(U). U ∈ J(V )

↓
(V ⊆ U)∗(U) ∈ J(V )




transJ :=


∀U ∈ O(X).
∀U ∈ J(U).
∀S ∈ Sieves_on(U). (S ∈ J(U))

↑
∀V ∈ U .((V ⊆ U)∗(S) ∈ J(V ))




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9 Drawing the properties
Here is my (current) favorite way to draw the properties hasmaxJ, stabJ,

and transJ for a Grothendieck topology J on the topological space (X,O(X)):

U (O(U) ∈ J(U))

V

UOO (U ∈ J(U))

(U ∩ O(V ) ∈ J(V ))
��

U

∈

∀V

UOO S

S ∩ O(V )

_

��

(S ∈ J(U))

(∀V ∈U . S ∩ O(V ) ∈ J(V ))

OO

[Rewrite this paragraph:]
Some details of the formal translation are omitted in that diagram, but

most of them can be reconstructed from the fonts and the placements. Actu-
ally the main intent of that diagram is to list notational conventions; in the
case above, 1) the objects of the category O(X) have names like U and V ; 2)
the arrows in O(X) go upwards, so our topos is SetO(X)op ; not SetO(X); 3)
the top element in each J(U) can be denoted by O(U); 4) we denote sieves
by names like S; 5) our typical name for a covering sieve on U is U ; 6) the
operation that “restricts sieves” and moves them downward in diagrams like
the ones in section 6 is ‘∩ O(V )’.

If I draw the Definition 1 in that shape I get this:

C (tC ∈ J(C))

D

C
h

OO (S ∈ J(C))

(h∗(S) ∈ J(D))
��

S
∈

∀D

C
∀h
OO R

h∗(R)

_

��

(R ∈ J(C))

(∀(h : D → C) ∈ S. h∗(R) ∈ J(D))

OO

Note that in the first drawing the ‘∈’ points to the ‘V ’, and in the second
one to the ‘h’.
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Here is Definition 1 again, followed by its two translations to the more
visual ways to represent the properties, that stress that stabJ propagates
J-coveringness down and transJ propagates J-coveringness up:

1. The maximal sieve tC = { f | cod(f) = C } is in J(C);
2. (stability axiom) is S ∈ J(C), then h∗(S) ∈ J(D) for any

arrow h : D → C;
3. (transitivity axiom) if S ∈ J(C) and R is any sieve on C

such that h∗(S) ∈ J(D) for all h : D → C in S, then
R ∈ J(C).

hasmaxJ := (∀C ∈ C. t(C) ∈ J(C))

stabJ :=


∀h : D → C.
∀S ∈ Sieves_on(C). S ∈ J(C)

↓
h∗(S) ∈ J(D)




transJ :=


∀C ∈ C.
∀S ∈ J(U).
∀R ∈ Sieves_on(U). (R ∈ J(C))

↑
∀(h : D → C) ∈ S. (h∗(R) ∈ J(D))




C (tC ∈ J(C))

D

C
h

OO (S ∈ J(C))

(h∗(S) ∈ J(D))
��

S
∈

∀D

C
∀h
OO R

h∗(R)

_

��

(R ∈ J(C))

(∀(h : D → C) ∈ S. h∗(R) ∈ J(D))

OO
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I learned most of what I know about Grothendieck topologies on posets
from [Lin14]. He uses the notational conventions below to define Grothendieck
topologies on a poset P (in pages 8–9 of the paper):

p (↓p ∈ J(p))

q

p

q≤p

OO (S ∈ J(p))

(S ∩ ↓q ∈ J(q))
��

S

∈

∀q

p
q≤p

OO R

R ∩ ↓q

_

��

(R ∈ J(p))

(∀q∈S. R ∩ ↓q ∈ J(q))

OO

I will use notational conventions for grtops on posets that are very close
to the first diagram in this section, that showed the properties of a grtop on
a topological space (X,O(X)).

In the diagrams of section 6 I showed how to visualize the canonical
Grothendieck topology Jcan on the topological space (H,O(H)); this Jcan
was an object of the topos SetO(H)op , but we had this:

O(H) = B =

32

20

21

22

10

11

12

00

01

02

↖

↗ ↖

↗ ↖ ↗ ↖

↖ ↗ ↖ ↗

↖ ↗

so that Jcan was also an object of SetBop . Let’s see how to define grtops on
arbitrary posets D (mnemonic: “DAG”), i.e., in categories SetD

op or SetD.
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Suppose that D is a poset with its arrows pointing up. Our notational
conventions for grtops on D will be exactly the same as the ones that we
used for grtops on O(X), with only these changes: 1) elements of D will be
denoted by u and v (instead of U, V ∈ O(X), where the U and V were in
uppercase); 2) we will write ↓u and ↓v instead of O(U) and O(V ); 3) we will
write D instead of O(X). We will still use S for a sieve and U for a covering
sieve (but now U covers u, not on U); so S and U are down-sets of D, and
S,U ⊆ D (instead of S,U ⊆ O(X)).

This was our diagram for a grtop on a topological space (X,O(X)):

U (O(U) ∈ J(U))

V

UOO (U ∈ J(U))

(U ∩ O(V ) ∈ J(V ))
��

U

∈

∀V

UOO S

S ∩ O(V )

_

��

(S ∈ J(U))

(∀V ∈U . S ∩ O(V ) ∈ J(V ))

OO

This is our diagram for a grtop on a poset D with its arrows pointing up:

u (↓u ∈ J(u))

v

uOO (U ∈ J(u))

(U ∩ ↓v ∈ J(v))
��

U

∈

∀v

uOO S

S ∩ ↓v

_

��

(S ∈ J(u))

(∀v∈U . S ∩ ↓v ∈ J(v))

OO

This characterizes the subobjects J ⊆ Ω of a category SetD
op that are

Grothendieck topologies. To define grtops when the arrows in D point down
— the 2-column graphs of [PH1, section 14] use arrows pointing down — we
just need to switch the direction of the arrows in the left column.
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10 Other Grothendieck topologies
In the section 6 we drew a specific Grothendieck topology on (H,O(H)):

the “canonical” one, that was a subobject Jcan ↪→ Ω in SetO(H)op . Let’s start
by a way to obtain other grtops on (H,O(H)).

Remember that we use U and S to denote subsets of a topology O(X):
S denotes a sieve, and U denotes a covering sieve. Let’s use the letter Y to
denote an arbitrary subset of O(X). We define the Grothendieck topology
JY on O(X) by:

JY(U) := { S ∈ Ω(U) | Y ∩ O(U) ⊆ S }
= { S ∈ Ω(U) | ↓(Y ∩ O(U)) ⊆ S }
= ↑D(Ω(U)) ↓(Y ∩ O(U))

Let’s start with an example. We will work in (H,O(H)), as in section 6,
and let Y := {01, 02, 11, 12}. So:

Y =
0
0

0 1
0 1 1
0 1
0

Then:

JY(21) := { S ∈ Ω(21) | ↓(Y ∩ O(21)) ⊆ S }

:= { S ∈
[ · ·

? ·
? ? ·
? ?
?

]
| ↓

( 0
0

0 1
0 1 1
0 1
0

∩
0
0

1 0
1 1 0
1 1
1

)
⊆ S }

:= { S ∈
[ · ·

? ·
? ? ·
? ?
?

]
| ↓

( 0
0

0 0
0 1 0
0 1
0

)
⊆ S }

:= { S ∈
[ · ·

? ·
? ? ·
? ?
?

]
|
( 0

0
0 0

0 1 0
1 1
1

)
⊆ S }

:=

[ · ·
? ·

? 1 ·
1 1
1

]
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So for this Y

Y = {01, 02, 11, 12} =
0
0

0 1
0 1 1
0 1
0

⊂ O(H)

we have:

JY =



[ ?
?

? 1
? 1 1
1 1
1

]
[ ·

?
? 1

? 1 1
1 1
1

]
[ · ·

? ·
? 1 ·
1 1
1

] [ · ·· 1· 1 1
1 1
1

]
[ · ·· ·

? · ·
? ·
?

] [ · ·· ·· 1 ·
1 1
1

] [ · ·· ·· · 1· 1
1

]
[ · ·· ·· · ·

? ·
?

] [ · ·· ·· · ·· 1
1

]
[ · ·· ·· · ·· ·

?

]

↘

↙ ↘

↙ ↘ ↙ ↘

↘ ↙ ↘ ↙

↘ ↙


All grtops on a finite poset D are of the form JY for some Y ⊆ D (see

[Lin14, page 43]); in particular, our Jcan is a JY for this Y :

Y = {↓_1, ↓_2, ↓1_, ↓2_, ↓3_} = {01, 02, 10, 20, 32} =
1
0

0 0
1 0 1
1 1
0

.
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The definition for JY given above also works on arbitrary posets, and there
is also a way to start with any Grothendieck topology J on an arbitrary poset
and obtain the Y such that J = JY . Here are the two constructions in the
notation of [Lin14, pages 11–12], each one followed by its translations into
our two notations:

JX(p) := {S ∈ D(↓p) | X ∩ ↓p ⊆ S }
JY(U) := { S ∈ Ω(U) | Y ∩ O(U) ⊆ S }
JY(u) := { S ∈ Ω(u) | Y ∩ ↓u ⊆ S }

XJ := { p ∈ P | J(p) = {↓p} }
YJ := {U ∈ O(X) | J(U) = {↓U} }
YJ := {u ∈ D | J(u) = {↓u} }

Let’s see an example of this. Let D := H, the (slanted) house DAG with
arrows going downwards, and let:

Y = {1_, _2} =
1
0
0

0
1

This Y generates this Grothendieck topology, JY ⊆ Ω, in the topos SetH :

JY =

 [
1
·
·

·
·

]
[

1
?
·

·
·

]
[

1
?
?

1
1

]

[
·
·
·

?
·

]
[

·
·
·

1
1

]

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11 Ex-Lion Tamer
The title words are absent from the song itself, which has trav-
elled far from its origins. Newman initially wrote a lyric featuring
a lion tamer. “Graham took one look, said, ‘This is rubbish’ and
rewrote it. There was a lion tamer involved somewhere.” Accord-
ing to Lewis, “That was the thing I thought was most memorable,
but totally irrelevant in the end. I rewrote it and, by the end,
it was called ‘Ex-Lion Tamer’ because even the lion tamer had
disappeared.” ([Nea08])

Let’s review our archetypal case, its terminology and its notational con-
ventions, and then make some changes to that.

We started with a topological space O(X), that was usually regarded as
a poset; that poset was also denoted by O(X). In most examples O(X)
was the order topology on the (slanted) house DAG H, that had 5 elements,
and O(X)-as-a-poset was the bottle DAG B, with 10 elements (see sec.4).
We referred to the elements of O(X) as “open sets”, and denoted them by
letters like U and V . A sieve is a subset of O(X) obeying certain properties;
we denoted sieves by calligraphic letters like R, S, and U , where U was a
covering sieve (on U). Also, we used the calligraphic letter Y to denote a
subset of O(X) that did not need to be a sieve. The set of all sieves on an
open set U ∈ O(X) was denoted by Ω(U), and the set of all covering sieves
on a U ∈ O(X) by J(U). We had this:

O(X)

∈

V ∈ U ∈ J(U) ⊂ Ω(U)
V ∈ U ∈ J(21) ⊂ Ω(21)

32

20
21
22

10
11
12

00
01
02

∈

10 ∈
0
0

0 0
0 0 0
1 1
1

∈
[ · ·

? ·
? ? ·
? 1
1

]
⊂

[ · ·
? ·

? ? ·
? ?
?

]

={
10, 01,

00

}
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Note that this diagram includes particular cases — in:

V ∈ U ∈ J(U) ⊂ Ω(U)
V ∈ U ∈ J(21) ⊂ Ω(21)

the bottom line specializes the top line to the case U = 21. It also includes
examples, like “in this context 10 is a possible value for V ”.

So: we first learned how to define Grothendieck topologies on a topolog-
ical space O(X), with this O(X) being regarded as a poset, and then we
saw how to define Grothendieck topologies on posets that do not need to
come from topologies. We will use Wire’s trick, and refer to these “posets
that no longer need to be topologies” as “ex-topologies”, and to their ele-
ments as “ex-open sets”. Our notational conventions for them will change:
the topology O(X) will become the ex-topology D (a poset), and the open
sets U, V ∈ O(X) will become ex-open sets u, v ∈ D. The rest will be kept
unchanged: for example, sieves will still be called sieves, and will be denoted
by the same calligraphic letters as before.

11.1 Ex-topologies: sieves as two-digit numbers
We will also change something else. In the case of Grothendieck topologies

on topological spaces we used this:

X = H =


1_

2_

3_

_1

_2

 O(X) = O(H) =

32

20
21
22

10
11
12

00
01
02

There the two-digit numbers, like 10, denoted open sets.
In the new setting, i.e., in the case of Grothendieck topologies on ex-

topological spaces, we will switch to this other convention:

D = N =


1_

2_

3_

_1

_2

_3
 D(D) = D(N) =

32
33

20
21
22
23

10
11
12
13

00
01
02
03
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Here it is our ex-topological space, D, that is a 2-column graph. This will
let us draw the set D(D) of all down-sets on D, i.e., the set of all sieves in
this context, as the ZHA associated to the 2-column graph D, as above; see
sec.4, and [PH1, sec.15] for the details. This will give us an alternative way
to represent sieves and sets of sieves: sieves are now two-digit numbers, and
sets of sieves are sets of two-digit numbers.

Here is a translation of the previous diagram to this new case:

D

∈

v ∈ U ∈ J(u) ⊂ Ω(u)
v ∈ U ∈ J(3_) ⊂ Ω(3_)

1_

2_

3_

_1

_2

_3


∈

2_ ∈
(

1
1
0

1
0
0
)

∈
[

1
1
?

1
?
·
]

⊂
[

?
?
?

?
?
·
]

= = =

21 ∈


·

32 ·
22 ·

21 · ·
· · ·
· ·
·

 ⊂


·

32 ·
22 ·

21 12 ·
20 11 02
10 01
00



={
2_,
1_,_1

}
Note that here we have v = 2_ and u = 3_ (two ex-open sets), U = 21 (a
sieve), Ω(u) = Ω(3_) = ↓↓3_ = ↓32, and J(3_) = ↑Ω(3_) 21. The 6-node
poset that plays the role of D in this example will sometimes be called by its
proper name: “Art Déco N”, or just “N”, because in some Art Déco fonts
the uppercase N is drawn like this:
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12 Sieves as truth-values
From this point onwards all our examples will use the Art Déco N of the

end of the last section as our ex-topology; in other words, our examples will
use D := N . Also, from here onwards N will always stand for the Art Déco
N, not for the traditional N with four nodes of section 3. We will write D
and N as D and N when we regard them as categories; their arrows will
point downwards.

This is the subobject classifier of the topos SetN (compare it with the Ω
in section 6):

Ω =

 [
?
·
·

·
·
·
]

[
?
?
·

·
·
·
]

[
?
?
?

?
?
·
]

[
·
·
·

?
·
·
]

[
·
·
·

?
?
·
]

[
·
·
·

?
?
?
]

=


·

· ·
· ·

· · ·
· · ·
10 ·
00

·
· ·
· ·

· · ·
20 · ·
10 ·
00

·
32 ·
22 ·

21 12 ·
20 11 02
10 01
00

·
· ·
· ·

· · ·
· · ·
· 01
00

·
· ·
· ·

· · ·
· · 02
· 01
00

·
· ·
· ·

· · 03
· · 02
· 01
00


Note that the maximal sieves on 3_ and _3 are:

t3_ = ↓3_ = 32 =

(
1
1
1

1
1
·
)

and t_3 = ↓_3 = 03 =

(
·
·
·

1
1
1
)

,

so here we have sieves that are not in any of the ‘Ω(u)’s. The set of all sieves

2021groth-tops-children May 20, 2021 10:47



CONTENTS 33

on the ex-topology N is:

D(N) =


33

32 23
22 13

21 12 03
20 11 02
10 01
00

 ,

that is exactly the set of subobjects of the terminal object 1 ∈ SetN. So:

Sub(1SetN) =

[
?
?
?

?
?
?
]

This holds for any poset D. More precisely: our way of speaking of
Grothendieck topologies on a poset D requires treating D as an ex-topology
and working on the topos SetD; in the terminology that we are using the set
of truth-values of that topos, Sub(1SetD), is essentially the same thing as the
set of sieves on D, D(D).

To be coherent with our notational conventions we will use for truth-
values the same letters that we use for sieves: R,S,U ,V . When D is a
(finite, acyclic) 2-column graph the set of truth-values of SetD will be a
Planar Heyting Algebra — a ZHA. The paper [PH1] is about how to visualize
the operations of Propositional Calculus on ZHAs, and we will reuse all its
ideas and notations, except that here we will use letters like R,S,U ,V to
denote truth-values, instead of P,Q,R, S. Also, very important:

From this point onwards the letter H will denote the Heyting
Algebra H = Sub(1SetD) = D(D), instead of the house DAG.
This Heyting Algebra H = D(D) will be a ZHA when D is a
(finite, acyclic) 2-column graph.

13 The union as a modality
Let’s go back to the case of Grothendieck topologies on a topological space

O(X) for a moment. We defined the canonical topology there by saying that
a sieve S in O(U) “covers” U iff

⋃
S = U . This is equivalent to saying that

a sieve S in O(U) covers U iff ↓
⋃
S = ↓U , and if we define an operation (·)∗

on sieves by:
S∗ := ↓

⋃
S
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then we can redefine the notion of canonical Grothendieck topology in terms
of it (details soon!). This operation (·)∗ : H → H, where H is the Heyting
Algebra of sieves-a.k.a.-truth-values obeys, for all sieves R and S,

S ⊆ S∗ = S∗∗ and (R∩ S)∗ = R∗ ∩ S∗ ,

which are exactly the conditions on J-operators in [PH2], except that J-
operators act on ZHAs, not in Heyting Algebras in general.

An operation (·)∗ : H → H on a Heyting Algebra H that obeys S ⊆
S∗ = S∗∗ and (R ∩ S)∗ = R∗ ∩ S∗ is called a nucleus on H. In [PH2] there
are lots of examples of nuclei and ways to visualize them, but the operation
S∗ := ↓

⋃
S doesn’t appear there. In the next section we will see how to

convert nuclei to Grothendick topologies, and vice-versa.
Note that in the page of examples in sec.5 the operation S∗ := ↓

⋃
S

appears at the end (...not yet! fix this!)

14 Nuclei, congruences, and sub-HAs
In section 10 we saw a way to take a set Y of sieves and generate a

Grothendieck topology JY from it, and how to take a Grothendieck topology
J and generate a set of sieves YJ from it. Now we will do something much
more powerful. We will use a shorter notation: we will use J to denote a
Grothendieck topology, Y to denote a set of sieves, ∼ to denote a congruence,
(·)∗ to denote a nucleus, and H ′ to denote a sub-ZHA (of our planar Heyting
Algebra H); note that we are using indefinite articles everywhere — they
imply that there is a “space of all ‘J ’s”, a “space of all ‘∼’s”, and so on.
From these space of ‘J ’s, of ‘∼’s, etc, we can build the spaces of all functions
between them, and when we say “a function (J 7→∼)” it will be implicit that
it will be a function that receives ‘J ’s and returns ‘∼’s — an element of that
space of functions.

Fix a two-column graph D; let H be the planar Heyting Algebra of the
down-sets of D. This H = D(D) is also the algebra of truth-values of the
topos SetD: H = Sub(1SetD). Let Ω be the (canonical) subobject classifier
of the topos SetD. We will need the 10 definitions below, that suppose that
D, H, and Ω are fixed:

1. a proto-Grothendieck topology J is an operation that takes each u ∈ D
to a subset J(u) ⊂ Ω(u), and a Grothendieck topology J is a proto-
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Grothendieck topology J plus the assurance (in the sense of [FavC,
sections 6.4 and 7.5]) that this J obeys hasmaxJ , transJ , and stabJ ,

2. a proto-congruence ∼ is a relation ∼ ⊂ H ×H, and a congruence ∼ is
a proto-congruence ∼ plus the assurance that this ∼ is an equivalence
relation on H,

3. a proto-nucleus (·)∗ is a function (·)∗ : H → H, and a nucleus (·)∗
is a proto-nucleus (·)∗ plus the assurance that for all R,S ∈ H the
conditions R ≤ R∗ = R∗∗ and (R∧ S)∗ = R∗ ∧ S∗ hold,

4. a proto-sub-HA is a subset H ′ ⊂ H, and a sub-HA is a H ′ that is a
Heyting Algebra (obs: with operations ∨H′ and →H′ defined in a funny
way; see [Lin14, Definition B.10]. TODO: explain that!),

5. a proto-set of sieves Y is a subset Y ⊆ D, and a set of sieves is the
same thing as a proto-set of sieves.

In some contexts “an operation (J 7→ ∼)” will be a function that receives
proto-Grothendieck topologies and returns proto-congruences, and in other
contexts it will be a function that receives (non-proto-)Grothendieck topolo-
gies and returns (non-proto-)congruences — the notation won’t change. We
will always say very clearly if the current context is “everything is proto” or
“nothing is proto”.

We will always draw our (·)∗s, H ′s, ∼s, Js and Ys in this position:

(·)∗ H ′

Y
∼ J

(nucleus) (sub-HA)
(set of sieves)

(congruence) (Groth.top)
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Our first twelve conversion functions will be these ones:
(Y 7→ J) J(u) = { S ∈ Ω(u) | Y ∩ ↓u ⊆ S }
(J 7→ Y) Y = {u ∈ D | J(u) = {↓u} }

((·)∗ 7→ H ′) H ′ = { S ∈ H | S∗ = S } = H∗

(H ′ 7→ (·)∗) S∗ =
⋂
{ T ∈ H ′ | S ⊆ T }

((·)∗ 7→∼) ∼ = { (R,S) ∈ H2 | R∗ = S∗ }
(∼7→ (·)∗) S∗ =

⋃
{R ∈ H | R ∼ S }

((·)∗ 7→ J) J(u) = { S ∈ Ω(u) | u ∈ S∗ }
(J 7→ (·)∗) S∗ = {u ∈ D | S ∩ ↓u ∈ J(u) }

(H ′ 7→ J) J(u) = { S ∈ Ω(u) | ∀T ∈ H ′. (S ⊆ T ⇒ u ∈ T ) }
(J 7→ H ′) H ′ = { S ∈ H | ∀u ∈ D. (S ∩ ↓u ∈ J(u) ⇒ u ∈ S) }

(∼7→ J) J(u) = { S ∈ Ω(u) | S ∼ ↓u }
(J 7→∼) ∼ = { (R,S) ∈ H2 | ∀u ∈ D. (R∩ ↓u ∈ J(u) ↔ S ∩ ↓u ∈ J(u)) }

They correspond to the arrows in these diagrams,

Y

J

�
��?

??
?Y

J

__

�
??

??

(·)∗ H ′� //(·)∗ H ′oo �(·)∗

∼

_

��

(·)∗

∼

OO

_

(·)∗

J

�

��?
??

??
??

??
??

(·)∗

J

__

�
??

??
??

??
??

?
H ′

J

_

��

H ′

J

OO

_
∼ J

� //∼ Joo �

The right half of that diagram corresponds to this diagram from [Lin14],
theorem B.25, page 64:

Nuc(D(P)) Sub(D(P))op
j 7→Mj //Nuc(D(P))

Con(D(P))

j 7→θj

��

Nuc(D(P))

G(P)

j 7→Jj
RRRR

RR

((RRR
RRR

Sub(D(P))op

G(P)

M7→JM
��

Con(D(P)) G(P)
θ 7→Jθ

//

but Lindenhovius uses ‘j’s for nuclei, ‘M’s for subframes (we use sub-HAs
instead of subframes), and ‘θ’s for congruences.

Lindenhovius presents the conversions in the way that is standard in
mathematical texts: he starts by defining each of the four corners of the
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diagram in its non-proto version, first as a set, and then as a poset — see
the references in the diagram below,

Nuc(D(P))
(def. B.6)

Sub(D(P))op

(def. B.10)

(prop. B.12) //Nuc(D(P))
(def. B.6)

Con(D(P))
(def. B.15)

(prop. B.23)

��

Nuc(D(P))
(def. B.6)

G(P)
(def. 2.1)

(prop. B.8)
KKK

KKK
KKK

K

%%KK
KKK

KKK
KK

Sub(D(P))op

(def. B.10)

G(P)
(def. 2.1)

(thm. B.25)

��
Con(D(P))

(def. B.15)

G(P)
(def. 2.1)(thm. B.25)
//

and then he defines each of the five arrows above as a “non-proto” order
isomorphism, and this takes at least a half page of his paper in each case.
Let me explain what I mean by “proto” and “non-proto” here, and explain
how we can change the order of the definitions and leave everything that is
not “proto” to a second stage (“for adults”). This idea comes from sections
12 and 19 of [IDARCT].

Look at this diagram:

A

B

f

��

A

B

OO

g

A′

B′

f ′

���
�
�
�A
′

B′

OO

g′

�
�
�
� = { a ∈ A | P (a) }

= { b ∈ A | Q(a) }

Suppose that A is our set of proto-‘a’s, A′ is our set of ‘a’s, B is our set of
proto-‘b’s, and B′ is our set of ‘b’s. Also, P is a proposition on A, and Q is
a proposition on B.

When we define a bijection between sets A and B in a proof assistant or in
a type theory we define it as a 4-uple, made of an arrow f : A → B, an arrow
g : B → A, and assurances that g◦f = id and f ◦g = id. A proto-bijection is
just the pair of arrows (f, g), without the assurances (i.e., without the “proof-
terms”). In order to show that this bijection restricts to a bijection between
A′ and B′ we need two other proof terms: one for ∀a ∈ A.(P (a) → Q(f(a)))
and another for ∀b ∈ B.(Q(b) → P (g(b))). Lindenhovius uses this order of
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definition,
A,P,B,Q,
f, (∀a ∈ A.(P (a) → Q(f(a)))),
g, (∀b ∈ B.(Q(b) → P (g(b)))),
(∀a ∈ A.(P (a) → a = g(f(a)))),
(∀b ∈ B.(Q(b) → b = f(g(b)))),

and on top of that he also defines ordering on its sets A′ and B′, and proves
that his ‘f ’s and ‘g’s preserve these orderings.

Our intent here is to show that to understand Grothendieck topologies
on (finite) posets we can, and we should, start by just the “proto” part,

A,B, f, g

that in this case will be the definitions of proto-Grothendieck topology, proto-
congruence, proto-nucleus, proto-sub-HA and proto-set of sieves from the
beginning of this section, plus the 12 conversion functions in this diagram:

Y

J

�
��?

??
?Y

J

__

�
??

??

(·)∗ H ′� //(·)∗ H ′oo �(·)∗

∼

_

��

(·)∗

∼

OO

_

(·)∗

J

�

��?
??

??
??

??
??

(·)∗

J

__

�
??

??
??

??
??

?
H ′

J

_

��

H ′

J

OO

_
∼ J

� //∼ Joo �

Let’s fix a two-column graph D; we will use the Art Déco N of section
11.1 as our D. Remember that its algebra of truth-values is this ZHA:

H = D(N) =


33

32 23
22 13

21 12 03
20 11 02
10 01
00


In sections 1 and 2 of [PH2] we defined “slashings” on a ZHA. They looked

like this:

32
33

20
21
22

23

10
11

12
13

00
01
02

03
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but they could be interpreted in many ways. We will add subscripts to them
to disambiguate:

(·)∗ =


32

33

20
21

22
23

10
11

12
13

00
01

02
03


(·)∗

∼ =


32
33

20
21
22

23

10
11

12
13

00
01
02

03


(∼)

Here the subscript (·)∗ in the first slashing indicates that we are interpreting
it as the operation that takes all elements in each region to the top element
of that region, and the subscript (∼) in the second one indicate that we are
interpreting it as the equivalence relation that says that R ∼ S is true iff S
and S are both in the same region. The “(·)∗=” and the “∼ =” mean “let
(·)∗ be this function from H to H” and “let ∼ be this equivalence relation
on H”.

The X-shaped diagram associated to a given set of sieves Y is built as
this: 1) take this Y , and use the twelve conversions in any order you like
to build the (·)∗, the H ′, the ∼, and the J associated to it; the theorems in
[Lin14] indicate that the results will be will-defined and don’t depend on the
order used to define them; 2) draw them in this position,

(·)∗ H ′

Y
∼ J

replacing each symbol by its corresponding value.
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Here are two examples of X-shaped diagrams.

1. For Y = {1_,_1} we get this — compare it
with the double negation modality of [PH2, sec.6]:

32
33

20
21

22
23

10
11

12
13

00
01

02
03


(·)∗

33
· ·
· ·

· · 03
20 · ·

· ·
00

{1_,_1}
32

33

20
21

22
23

10
11

12
13

00
01

02
03


(∼)

 [
1
·
·

·
·
·
]

[
1
?
·

·
·
·
]

[
1
?
?

1
?
·
]

[
·
·
·

1
·
·
]

[
·
·
·

1
?
·
]

[
·
·
·

1
?
?
]

2. For Y =
{ 3_,_3,

_2,
1_,_1

}
we get this — the

“forcing modality” (∧21 ∧→12) of [PH2, sec.6]):
32

33

20
21

22
23

10
11

12
13

00
01

02
03


(·)∗

33
32 23
22 ·

21 · 03
20 · 02

· 01
00{ 3_,_3,

_2,
1_,_1

}


32
33

20
21

22
23

10
11

12
13

00
01

02
03


(∼)

 [
1
·
·

·
·
·
]

[
1
1
·

·
·
·
]

[
1
?
1

1
1
·
]

[
·
·
·

1
·
·
]

[
·
·
·

1
?
·
]

[
·
·
·

1
?
1
]
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15 Extracting meaning from pictures
(This section is a mess)
After calculating a few X-shaped diagrams by brute force we get — or,

let me be more honest: I got — some visual intuition on what the twelve
conversions from section 14 “mean”... in particular, I became able to recon-
struct the definitions of the twelve conversions from vague memories of what
they should do. My memory is especially bad, and I have to reconstruct
definitions and proofs all the time; I wrote a bit about that in [IDARCT,
section 10] and [FavC, section 6].

This is an excerpt from a long blog post by Kevin Buzzard ([Buz21]):
Mathematicians think in pictures
I have a picture of the real numbers in my head. It’s a straight
line. This picture provides a great intuition as to how the real
numbers work. I also have a picture of what the graph of a dif-
ferentiable function looks like. It’s a wobbly line with no kinks
in. This is by no means a perfect picture, but it will do in many
cases. For example: If someone asked me to prove or disprove the
existence of a strictly increasing infinitely differentiable function
f : R → R such that f ′(37) = 0 and f ′′(37) < 0 then I would
start by considering a picture of a graph of a strictly increasing
function (monotonically increasing as we move from left to right),
and a second picture of a function whose derivative at x = 37 is
zero and whose second derivative is negative (a function with a
local maximum). I then note that there are features in these pic-
tures which make them incompatible with each other. Working
with these pictures in mind, I can now follow my intuition and
write down on paper a picture-free proof that such a function
cannot exist, and this proof would be acceptable as a model so-
lution to an exam question. My perception is that other working
mathematicians have the same pictures in their head when pre-
sented with the same problem, and would go through roughly the
same process if they were asked to write down a sketch proof of
this theorem.

A good part of [Lin14] is about nice properties that we have when our
posets are finite, or Artinian, and that do not need to hold in more complex
cases — and I don’t have a way to discuss them with diagrams yet.
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(To do: mention Badiou, and how the non-mathematicians that study
Badiou that I know try to understand his uses of toposes)

16 Lawvere-Tierney topologies
It is easy to connect what we saw in the previous sections with Lawvere-

Tierney topologies. Let me state some facts without proof.
1. Start with a nucleus (·)∗ on a ZHA, and calculate both its associated

set of sieves Y and its 2-column graph with question marks (as in [PH2,
section 1.1]). The elements of Y are exactly the points of the 2CG that do
not have question marks. For example, here Y = {3_, 1_,_1,_2,_3}:

32
33

20
21

22
23

10
11
12

13

00
01

02
03


?

?

?

1_

2_

3_

_1

_2

_3


2. Start with a nucleus (·)∗ on a ZHA, and calculate its associated
Grothendieck topology J and its Lawvere-Tierney topology j. This j is the
characteristic map of the inclusion J ↪→ Ω in the pullback diagram below:

J 1! //J

Ω

� _

i

��

1

Ω

� _

>
��

Ω Ω
j:=χi

//

Our big diagram in section 11.1 hinted at an alternative way to draw each
J(u) and each Ω(u), in this part:[

?
1
?

1
?
·
]

⊂
[

?
?
?

?
?
·
]

= =
·

32 ·
22 ·

21 · ·
· · ·
· ·
·

 ⊂


·

32 ·
22 ·

21 12 ·
20 11 02
10 01
00


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Let’s take this alternative way further. For each ex-open set u ∈ D the
map j(u) : Ω(u) → Ω(u) can be drawn in a very nice way as a slashing on
just Ω(u); we draw the points of H that are not in Ω(u) as dots to indicate
that they are outside of the domain, as we did in section 5.

We can calculate the J and the j for the nucleus (·)∗ above by brute force,
and draw them. We get this:

J =
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j =
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
We have: a) j(u)(S) = S∗ ∧ ↓u, and b) J(u) = { S ∈ Ω(u) | S∗ = ↓u },

i.e., J(u) is made of the points of Ω(u) in the topmost region of j(u). It is
possible to prove that these properties hold in general, and they mean that if
we start from a nucleus (·)∗ it is very easy to draw the j and the J associated
to it: each j(u) is made by “restricting (·)∗ to ↓u”, and each J(u) in this
notation is made of the elements of the topmost region of the corresponing
j(u); to draw each J(u) in the other notation we have to erase everything
above ↓u and write the ex-open sets with question marks as ‘?’s and the
other ones as ‘1’. For example:

?

?

?

1_

2_

3_

_1

_2

_3
  

[
?
1
?

1
?
·
]
= J(3_)
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17 Etc
TODO: closure operators, sheaves, the sheafification functor. Clean up

[Och20] and [PH2]. The functor ‘+’ of [LM92, p.129].
THANKS: to Ana Luiza Tenório for all the encouragement, comments,

and questions!
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