|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C2-VR.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C2-VR.tex" :end))
% (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C2-VR.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C2-VR.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C2-VR.pdf"))
% (defun e () (interactive) (find-LATEX "2023-1-C2-VR.tex"))
% (defun o1 () (interactive) (find-LATEX "2023-1-C2-P1.tex"))
% (defun o2 () (interactive) (find-LATEX "2023-1-C2-P2.tex"))
% (defun u () (interactive) (find-latex-upload-links "2023-1-C2-VR"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun d0 () (interactive) (find-ebuffer "2023-1-C2-VR.pdf"))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
% (code-eec-LATEX "2023-1-C2-VR")
% (find-pdf-page "~/LATEX/2023-1-C2-VR.pdf")
% (find-sh0 "cp -v ~/LATEX/2023-1-C2-VR.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2023-1-C2-VR.pdf /tmp/pen/")
% (find-xournalpp "/tmp/2023-1-C2-VR.pdf")
% file:///home/edrx/LATEX/2023-1-C2-VR.pdf
% file:///tmp/2023-1-C2-VR.pdf
% file:///tmp/pen/2023-1-C2-VR.pdf
% http://anggtwu.net/LATEX/2023-1-C2-VR.pdf
% (find-LATEX "2019.mk")
% (find-Deps1-links "Caepro5 Piecewise1")
% (find-Deps1-cps "Caepro5 Piecewise1")
% (find-Deps1-anggs "Caepro5 Piecewise1")
% (find-MM-aula-links "2023-1-C2-VR" "C2" "c2m231vr" "c2vr")
% «.defs» (to "defs")
% «.defs-T-and-B» (to "defs-T-and-B")
% «.defs-caepro» (to "defs-caepro")
% «.defs-pict2e» (to "defs-pict2e")
% «.defs-edovs» (to "defs-edovs")
% «.title» (to "title")
%
% «.djvuize» (to "djvuize")
% <videos>
% Video (not yet):
% (find-ssr-links "c2m231vr" "2023-1-C2-VR")
% (code-eevvideo "c2m231vr" "2023-1-C2-VR")
% (code-eevlinksvideo "c2m231vr" "2023-1-C2-VR")
% (find-c2m231vrvideo "0:00")
\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx21} % (find-LATEX "edrx21.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrx21chars.tex % (find-LATEX "edrx21chars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%\usepackage{emaxima} % (find-LATEX "emaxima.sty")
%
% (find-es "tex" "geometry")
\usepackage[a6paper, landscape,
top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot
]{geometry}
%
\begin{document}
% «defs» (to ".defs")
% (find-LATEX "edrx21defs.tex" "colors")
% (find-LATEX "edrx21.sty")
\def\drafturl{http://anggtwu.net/LATEX/2023-1-C2.pdf}
\def\drafturl{http://anggtwu.net/2023.1-C2.html}
\def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}}
% (find-LATEX "2023-1-C2-carro.tex" "defs-caepro")
% (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e")
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% «defs-T-and-B» (to ".defs-T-and-B")
\long\def\ColorOrange#1{{\color{orange!90!black}#1}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}}
\def\B (#1 pts){\ColorOrange{\bf(#1 pts)}}
% «defs-caepro» (to ".defs-caepro")
%L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX")
\def\Caurl #1{\expr{Caurl("#1")}}
\def\Cahref#1#2{\href{\Caurl{#1}}{#2}}
\def\Ca #1{\Cahref{#1}{#1}}
% «defs-pict2e» (to ".defs-pict2e")
%L V = nil -- (find-angg "LUA/Pict2e1.lua" "MiniV")
%L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua")
%L Pict2e.__index.suffix = "%"
\def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}}
\def\pictaxesstyle{\linethickness{0.5pt}}
\def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}}
\celllower=2.5pt
\pu
% «defs-edovs» (to ".defs-edovs")
%
\sa{(M)}{
\left(\begin{array}{rcl}
\D \dydx &=& \D \frac{g(x)}{h(y)} \\
h(y)\,dy &=& g(x)\,dx \\
\inty{h(y)} &=& \intx{g(x)} \\
\mcc{\veq} & & \mcc{\veq} \\
\mcc{H(y)+C1} & & \mcc{G(x)+C2} \\
H(y) &=& G(x)+C2-C1 \\
&=& G(x)+C3 \\
H^{-1}(H(y)) &=& H^{-1}(G(x)+C3) \\
\mcc{\veq} & & \\
\mcc{y} & & \\
\end{array}
\right)
}
\sa{(F)}{
\left(\begin{array}{rcl}
\D \dydx &=& \D \frac{g(x)}{h(y)} \\
H^{-1}(H(y)) &=& H^{-1}(G(x)+C3) \\
\mcc{\veq} & & \\
\mcc{y} & & \\
\end{array}
\right)
}
\sa{[M]}{\CFname{M}{}}
\sa{[F]}{\CFname{F}{}}
\sa{[S]}{\CFname{S}{}}
% _____ _ _ _
% |_ _(_) |_| | ___ _ __ __ _ __ _ ___
% | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \
% | | | | |_| | __/ | |_) | (_| | (_| | __/
% |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___|
% |_| |___/
%
% «title» (to ".title")
% (c2m231vrp 1 "title")
% (c2m231vra "title")
\thispagestyle{empty}
\begin{center}
\vspace*{1.2cm}
{\bf \Large Cálculo 2 - 2023.1}
\bsk
Prova de reposição (VR)
\bsk
Eduardo Ochs - RCN/PURO/UFF
\url{http://anggtwu.net/2023.1-C2.html}
\end{center}
\newpage
\scalebox{0.54}{\def\colwidth{6.6cm}\firstcol{
{\bf Questão 1.}
\T(Total: 4.0 pts)
Calcule:
%
$$\intx{\frac{x^3}{(x-4)(x+5)}}$$
\bsk
{\bf Questão 2.}
\T(Total: 4.0 pts)
Calcule
%
$$\intx{x^3 \sqrt{1-4x^2}}$$
e teste o seu resultado.
\bsk
{\bf Questão 3.}
\T(Total: 4.0 pts)
Seja (*) esta EDO:
%
$$\frac{dy}{dx} \;=\; - \frac{1}{4y^3}$$
a) \B (1.0 pts) Encontre a solução geral ``positiva'' de $(*)$ e teste-a.
b) \B (2.0 pts) Encontre a solução geral ``negativa'' de $(*)$ e teste-a.
c) \B (1.0 pts) Encontre a solução particular de $(*)$ que passa pelo
ponto $(4,-3)$ e teste-a.
}\anothercol{
{\bf Dicas}
Pra resolver a questão 2 você vai ter que começar com uma substituição
da forma $u=2x$ -- isso vai transformar aquela integral numa que dá
pra resolver por um dos casos mais simples de substituição
trigonométrica.
\msk
Nas questões 1 e 3 é muito fácil a gente se perder nas contas e chegar
ou a soluções erradas ou a soluções quase ilegíveis que só fazem
sentido pra um leitor com muita, muita, muita boa vontade. O melhor
modo de evitar isso é definir várias funções intermediárias usando o
``seja'' -- lembre que cada uma delas tem que ter um nome diferente!!!
-- e usar as partículas em português pra distinguir as igualdades que
são verdade sempre, as que só são verdade em certas condições, as que
vamos testar se são verdadeiras ou não, e as que são hipóteses pro
chutar-e-testar. A folha em anexo tem exemplos de várias das
partículas em português mais comuns.
}\anothercol{
\vspace*{0.25cm}
A EDO da questão 3 é uma EDO com variáveis separáveis (``EDOVS''). Eu
costumo escrever o ``método'' e a ``fórmula'' para resolver EDOVSs
deste jeito,
\msk
$\scalebox{0.7}{$
\begin{array}{rcl}
\ga{[M]} &=& \ga{(M)} \\\\[-5pt]
\ga{[F]} &=& \ga{(F)} \\
\end{array}
$}
$
\msk
Mas você pode organizar as suas contas de outros jeitos se quiser.
}}
\newpage
% «anexo-L» (to ".anexo-L")
\def\anexoL{
A substituição é:
%
$$\ga{[S]} \;=\;
\bmat{
G(x) := x^4 + 5 \\
H(y) := y^2 + 3 \\
g(x) := 4x^3 \\
h(y) := 2y \\
H^{-1}(x) := \sqrt{x-3} \\
}
$$
a) Seja:
%
$$\frac{dy}{dx} = \frac{4x^3}{2y} \qquad (*)$$
b)
%
$\begin{array}[t]{lrcl}
\text{Seja:} & H^{-1}(x) &=& \sqrt{x-3}. \\
\text{Temos:} & H^{-1}(H(y)) &=& \sqrt{H(y)-3} \\
& &=& \sqrt{(y^2+3)-3} \\
& &=& y. \\
\end{array}
$
\msk
c) $\begin{array}[t]{lrcl}
& y &=& H^{-1}(G(x)+C_3) \\
&&=& \sqrt{(G(x)+C_3)-3} \\
&&=& \sqrt{((x^4+5)+C_3)-3} \\
&&=& \sqrt{x^4+2+C_3} \\
\text{Seja:} &
f(x) &=& \sqrt{x^4+2+C_3}. \\
\end{array}
$
}
% «anexo-R» (to ".anexo-R")
\def\anexoR{
d) $\begin{array}[t]{l}
\text{Será que $f(x)$ obedece $(*)$?} \\
\text{Temos }
f'(x) = \frac{2x^3}{\sqrt{x^4 + 2 + C_3}},
\text{ e com isso:}
\\
\\[-5pt]
\left(
f'(x) = \frac{4x^3}{2f(x)}
\right)
\bmat{
f(x) = \sqrt{x^4+2+C_3} \\
f'(x) = \frac{2x^3}{\sqrt{x^4 + 2 + C_3}} \\
}
\\
= \;\;
\left(
\frac{2x^3}{\sqrt{x^4 + 2 + C_3}}
= \frac{4x^3}{2\sqrt{x^4+2+C_3}}
\right)
\qquad \smile \\
\end{array}
$
\bsk
e) $\begin{array}[t]{lrcl}
\text{Se} & f(x_1) &=& y_1, \\
\text{i.e.,} & f(1) &=& 2, \\
\text{então} & f(1) &=& \sqrt{1^4+2+C_3} \\
&&=& \sqrt{3+C_3} \\
&&=& 2 \\
& 2^2 &=& \sqrt{3+C_3}^2 \\
& 4 &=& 3+C_3 \\
& C_3 &=& 1 \\
& f(x) &=& \sqrt{x^4+2+C_3} \\
& &=& \sqrt{x^4+3} \\
\text{Seja:} & f_1(x) &=& \sqrt{x^4+3}. \\
\end{array}
$
\bsk
f) $\begin{array}[t]{lrcl}
\text{Será que} & f_1(x_1) &=& y_1, \\
\text{i.e.,} & f_1(1) &=& 2? \\
& \sqrt{1^4+3} &=& \sqrt{4} \\
&&=& 2 \qquad \smile \\
\end{array}
$
}
% «anexo» (to ".anexo")
\scalebox{0.6}{\def\colwidth{9cm}\firstcol{
\vspace*{-0.5cm}
{\bf Anexo: gabarito de uma}
{\bf questão da P2 de 2022.2}
\ssk
\anexoL
}\anothercol{
\anexoR
}}
\newpage
\scalebox{0.6}{\def\colwidth{14cm}\firstcol{
{\bf Mini-gabarito}
1) $\intx{\frac{x^3}{(x-4)(x+5)}}
= x^2 - x + \frac{64}{9} \ln|x-4| + \frac{125}{9} \ln|x+5|
$
\msk
2) $\intx{x^3 \sqrt{1-4x^2}}
= (\frac{1}{5} x^4 - \frac{1}{60} x^2 - \frac{1}{120}) \sqrt{1-4x^2}
$
\msk
3a) $f_1(x) = \sqrt[4]{-x-C_3}$
3b) $f_2(x) = - \sqrt[4]{-x-C_3}$
3c) $f_3(x) = - \sqrt[4]{-x+85}$
}\anothercol{
}}
\newpage
\def\sa#1#2{\expandafter\def\csname myarg#1\endcsname{#2}}
\def\ga#1{\csname myarg#1\endcsname}
\sa{F1}{\int {x^3\,\sqrt{1-4\,x^2}}{\;dx}}
\sa{F3}{{{\int {u^3\,\sqrt{1-u^2}}{\;du}}\over{16}}}
\sa{F7}{\sqrt{1-4\,x^2}\,\left({{x^4}\over{5}}-{{x^2}\over{60}}-{{1}\over{
120}}\right)}
$$\begin{array}{l}
\ga{F1} \\
=\; \ga{F3} \\
=\; \ga{F7} \\
\end{array}
$$
\def\hboxthreewidth{4cm}
\def\hboxthree#1#2#3{\hbox to \hboxthreewidth{\rlap{#1}\hss#2\hss\llap{#3}}}
abc \hboxthree{a}{b}{c} def
abc \hboxthree{dd}{ee}{ff} def
\GenericWarning{Success:}{Success!!!} % Used by `M-x cv'
\end{document}
% ____ _ _
% | _ \(_)_ ___ _(_)_______
% | | | | \ \ / / | | | |_ / _ \
% | |_| | |\ V /| |_| | |/ / __/
% |____// | \_/ \__,_|_/___\___|
% |__/
%
% «djvuize» (to ".djvuize")
% (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex")
* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-fline "~/2023.1-C2/")
# (find-fline "~/LATEX/2023-1-C2/")
# (find-fline "~/bin/djvuize")
cd /tmp/
for i in *.jpg; do echo f $(basename $i .jpg); done
f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf }
f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf }
f () { cp -fv $1.png $1.pdf ~/2023.1-C2/
cp -fv $1.pdf ~/LATEX/2023-1-C2/
cat <<%%%
% (find-latexscan-links "C2" "$1")
%%%
}
f 20201213_area_em_funcao_de_theta
f 20201213_area_em_funcao_de_x
f 20201213_area_fatias_pizza
% __ __ _
% | \/ | __ _| | _____
% | |\/| |/ _` | |/ / _ \
% | | | | (_| | < __/
% |_| |_|\__,_|_|\_\___|
%
% <make>
* (eepitch-shell)
* (eepitch-kill)
* (eepitch-shell)
# (find-LATEXfile "2019planar-has-1.mk")
make -f 2019.mk STEM=2023-1-C2-VR veryclean
make -f 2019.mk STEM=2023-1-C2-VR pdf
% Local Variables:
% coding: utf-8-unix
% ee-tla: "c2vr"
% ee-tla: "c2m231vr"
% End: