|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C2-prova-monitor.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C2-prova-monitor.tex" :end))
% (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C2-prova-monitor.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C2-prova-monitor.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C2-prova-monitor.pdf"))
% (defun e () (interactive) (find-LATEX "2023-1-C2-prova-monitor.tex"))
% (defun o () (interactive) (find-LATEX "2023-1-C2-prova-monitor.tex"))
% (defun u () (interactive) (find-latex-upload-links "2023-1-C2-prova-monitor"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun d0 () (interactive) (find-ebuffer "2023-1-C2-prova-monitor.pdf"))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
% (code-eec-LATEX "2023-1-C2-prova-monitor")
% (find-pdf-page "~/LATEX/2023-1-C2-prova-monitor.pdf")
% (find-sh0 "cp -v ~/LATEX/2023-1-C2-prova-monitor.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2023-1-C2-prova-monitor.pdf /tmp/pen/")
% (find-xournalpp "/tmp/2023-1-C2-prova-monitor.pdf")
% file:///home/edrx/LATEX/2023-1-C2-prova-monitor.pdf
% file:///tmp/2023-1-C2-prova-monitor.pdf
% file:///tmp/pen/2023-1-C2-prova-monitor.pdf
% http://anggtwu.net/LATEX/2023-1-C2-prova-monitor.pdf
% (find-LATEX "2019.mk")
% (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/")
% (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/")
% (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/")
% (find-sh0 "cd ~/LUA/; cp -v Gram2.lua Tree1.lua Caepro5.lua ~/LATEX/")
% (find-MM-aula-links "2023-1-C2-prova-monitor" "C2" "c2m231pm" "c2pm")
% «.defs» (to "defs")
% «.defs-T-and-B» (to "defs-T-and-B")
% «.title» (to "title")
% «.links» (to "links")
% <videos>
% Video (not yet):
% (find-ssr-links "c2m231pm" "2023-1-C2-prova-monitor")
% (code-eevvideo "c2m231pm" "2023-1-C2-prova-monitor")
% (code-eevlinksvideo "c2m231pm" "2023-1-C2-prova-monitor")
% (find-c2m231pmvideo "0:00")
\documentclass[oneside,12pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
%
% (find-dn6 "preamble6.lua" "preamble0")
%\usepackage{proof} % For derivation trees ("%:" lines)
%\input diagxy % For 2D diagrams ("%D" lines)
%\xyoption{curve} % For the ".curve=" feature in 2D diagrams
%
\usepackage{edrx21} % (find-LATEX "edrx21.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrx21chars.tex % (find-LATEX "edrx21chars.tex")
\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%\usepackage{emaxima} % (find-LATEX "emaxima.sty")
%
% (find-es "tex" "geometry")
\usepackage[a6paper, landscape,
top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot
]{geometry}
%
\begin{document}
% \catcode`\^^J=10
% \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
% %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua")
% %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua")
% %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua")
% %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua")
% %L Pict2e.__index.suffix = "%"
% \pu
% \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}}
% \def\pictaxesstyle{\linethickness{0.5pt}}
% \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}}
% \celllower=2.5pt
% «defs» (to ".defs")
% (find-LATEX "edrx21defs.tex" "colors")
% (find-LATEX "edrx21.sty")
\def\u#1{\par{\footnotesize \url{#1}}}
\def\drafturl{http://anggtwu.net/LATEX/2023-1-C2.pdf}
\def\drafturl{http://anggtwu.net/2023.1-C2.html}
\def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}}
% «defs-T-and-B» (to ".defs-T-and-B")
\long\def\ColorOrange#1{{\color{orange!90!black}#1}}
\def\T(Total: #1 pts){{\bf(Total: #1)}}
\def\T(Total: #1 pts){{\bf(Total: #1 pts)}}
\def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}}
\def\B (#1 pts){\ColorOrange{\bf(#1 pts)}}
\catcode`\^^J=10
\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua")
%L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua")
%L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua")
%L dofile "Lazy5.lua" -- (find-LATEX "Lazy5.lua")
%L dofile "2022-1-C2-P2.lua" -- (find-LATEX "2022-1-C2-P2.lua")
%L Pict2e.__index.suffix = "%"
% _____ _ _ _
% |_ _(_) |_| | ___ _ __ __ _ __ _ ___
% | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \
% | | | | |_| | __/ | |_) | (_| | (_| | __/
% |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___|
% |_| |___/
%
% «title» (to ".title")
% (c2m231pmp 1 "title")
% (c2m231pma "title")
\thispagestyle{empty}
\begin{center}
\vspace*{1.2cm}
{\bf \Large Cálculo C2 - 2023.1}
\bsk
Prova para seleção de monitor
(17/abril/2023)
\bsk
Eduardo Ochs - RCN/PURO/UFF
\url{http://anggtwu.net/2023.1-C2.html}
\end{center}
\newpage
% «links» (to ".links")
% (find-LATEXfile "2023-C2-monitoria-edital.tex")
% (find-LATEXfile "2023-C2-monitoria-edital.tex" "parciais")
%
% \item Métodos de integração: mudança de variável, substituição
% trigonométrica, frações parciais.
% \item Somas de Riemann.
% \item Equações diferenciais com variáveis separáveis.
% (c4m231introp 6 "exercicio-3")
% (c4m231introa "exercicio-3")
% (c4m231introa "exercicio-3" "L e R")
%L namedang("EDOVSintro", "", [[
%L <EDOVSG>
%L ]])
%L EDOVSintro:sa("FOO"):output()
\pu
\scalebox{0.55}{\def\colwidth{10cm}\firstcol{
{\bf Questão 1}
\T(Total: 1.0 pts)
\ssk
Sejam:
%
$$\begin{array}{rcl}
[L] &=& \sum_{i=1}^N f(x_{i-1})(x_i-x_{i-1}) \\{}
[R] &=& \sum_{i=1}^N f(x_{i})(x_i-x_{i-1}) \\{}
[sup] &=& \sum_{i=1}^N \sup_{x∈[x_{i-1},x_i]}f(x) (x_i-x_{i-1}) \\{}
f(x) &=& 4-(x-2)^2 \\
P &=& \{0, 1, 2.5, 3\} \\
\end{array}
$$
Faça várias cópias do gráfico da $f(x)$ em $x∈[0,4]$ e desenhe no eixo
$x$ de cada uma delas a partição $P$. Depois represente sobre uma das
cópias o $[L]$ como uma soma de retângulos, sobre outra cópia o $[R]$,
e sobre outra o $[sup]$.
\bsk
\bsk
{\bf Questão 2}
\T(Total: 5.0 pts)
\ssk
Resolva esta integral
%
$$\intx{x^3 \sqrt{1-x^2}}
$$
e teste o seu resultado.
}\anothercol{
% (c2m222p2p 2 "edovs")
% (c2m222p2a "edovs")
{\bf Questão 3}
\T(Total: 4.0 pts)
O nosso ``método'' para resolver EDOs com variáveis separáveis era
este aqui:
$$\ga{FOO}$$
Digamos que $G(x) = x^4 + 3$ e $H(y) = y^2 + 1$.
Diga qual é a EDO associada a este caso e chame-a de $(*)$. Encontre a
solução geral da $(*)$ e encontre a solução particular que passa pelo
ponto $(3,9)$. Teste tudo.
}}
\GenericWarning{Success:}{Success!!!} % Used by `M-x cv'
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-tla: "c2pm"
% ee-tla: "c2m231pm"
% End: