|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file:
% http://anggtwu.net/LATEX/2023-2-C2-edovs-defs.tex.html
% http://anggtwu.net/LATEX/2023-2-C2-edovs-defs.tex
% (find-angg "LATEX/2023-2-C2-edovs-defs.tex")
% Author: Eduardo Ochs <eduardoochs@gmail.com>
%
% (defun e () (interactive) (find-angg "LATEX/2023-2-C2-edovs-defs.tex"))
% (defun o () (interactive) (find-angg "LATEX/2023-2-C2-mv-defs.tex"))
% (c2m232edovsp 6 "defs-e-exemplos")
% (c2m232edovsa "defs-e-exemplos")
% (c2m231p2p 2 "questao-1")
% (c2m231p2a "questao-1")
% «.reset» (to "reset")
% «.DFI» (to "DFI")
\sa {[M]}{\CFname{M}{}}
\sa {[F3]}{\CFname{F}{_3}}
\sa {[F2]}{\CFname{F}{_2}}
\sa {[S1]}{\CFname{S}{_1}}
\def\P#1{\left( #1 \right)}
% «reset» (to ".reset")
\sa{reset}{
\sa {G(x)} {G(x)}
\sa {H(y)} {H(y)}
\sa {g(x)} {g(x)}
\sa {h(y)} {h(y)}
\sa {Hinv(u)} {H^{-1}(u)}
\sa {Hinv(H(y))} {H^{-1}(H(y))}
\sa {Hinv(G(x)+C_3)} {H^{-1}(G(x)+C_3)}
}
\ga{reset}
\sa{reset-S1}{
\sa {g(x)} {-2x}
\sa {h(y)} {2y}
\sa {G(x)} {-x^2}
\sa {H(y)} {y^2}
\sa {Hinv(u)} {\sqrt{u}}
\sa {Hinv(H(y))} {\sqrt{y^2}}
\sa {Hinv(G(x)+C_3)} {\sqrt{-x^2+C_3}}
}
% Based on:
% (c2m231p2p 2 "questao-1")
% (c2m231p2a "questao-1")
\sa{(M)}{
\left(\begin{array}{rcl}
\D \dydx &=& \D \frac{\ga{g(x)}}{\ga{h(y)}} \\
\ga{h(y)}\,dy &=& \ga{g(x)}\,dx \\ \\[-10pt]
\inty{\ga{h(y)}} &=& \intx{\ga{g(x)}} \\
\mcc{\veq} & & \mcc{\veq} \\
\mcc{\ga{H(y)}+C_1} & & \mcc{\ga{G(x)}+C_2} \\ \\[-10pt]
\ga{H(y)} &=& \ga{G(x)}+C_2-C_1 \\
&=& \ga{G(x)}+C_3 \\ \\[-10pt]
\ga{Hinv(H(y))} &=& \ga{Hinv(G(x)+C_3)} \\
\mcc{\veq} & & \\
\mcc{y} & & \\
\end{array}
\right)
}
\sa{(F3)}{
\left(\begin{array}{rcl}
\D \dydx &=& \D \frac{\ga{g(x)}}{\ga{h(y)}} \\ \\[-10pt]
\ga{Hinv(H(y))} &=& \ga{Hinv(G(x)+C_3)} \\
\mcc{\veq} & & \\
\mcc{y} & & \\
\end{array}
\right)
}
\sa{(F2)}{
\left(\begin{array}{rcl}
\D \dydx &=& \D \frac{\ga{g(x)}}{\ga{h(y)}} \\ \\[-10pt]
y &=& \ga{Hinv(G(x)+C_3)} \\
\end{array}
\right)
}
\sa{(S)}{
\left[\begin{array}{rcl}
g(x) &:=& \ga{g(x)} \\
h(y) &:=& \ga{h(y)} \\
G(x) &:=& \ga{G(x)} \\
H(y) &:=& \ga{H(y)} \\
H^{-1}(u) &:=& \ga{Hinv(u)} \\
\end{array}
\right]
}
% Local Variables:
% coding: utf-8-unix
% End: