|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-caepro-plano.tex")
% (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-caepro-plano.tex" :end))
% (defun C () (interactive) (find-LATEXSH "lualatex 2023-caepro-plano.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page "~/LATEX/2023-caepro-plano.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-caepro-plano.pdf"))
% (defun e () (interactive) (find-LATEX "2023-caepro-plano.tex"))
% (defun u () (interactive) (find-latex-upload-links "2023-caepro-plano"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
% (defun d0 () (interactive) (find-ebuffer "2023-caepro-plano.pdf"))
% (code-eec-LATEX "2023-caepro-plano")
% (find-pdf-page "~/LATEX/2023-caepro-plano.pdf")
% (find-sh0 "cp -v ~/LATEX/2023-caepro-plano.pdf /tmp/")
% (find-sh0 "cp -v ~/LATEX/2023-caepro-plano.pdf /tmp/pen/")
% file:///home/edrx/LATEX/2023-caepro-plano.pdf
% file:///tmp/2023-caepro-plano.pdf
% file:///tmp/pen/2023-caepro-plano.pdf
% http://anggtwu.net/LATEX/2023-caepro-plano.pdf
% (find-LATEX "2019.mk")
% (find-lualatex-links "2023-caepro-plano" "caepl")
\documentclass[oneside,10pt]{article}
\usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref")
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{pict2e}
\usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor")
%\usepackage{colorweb} % (find-es "tex" "colorweb")
%\usepackage{tikz}
\usepackage{longtable} % (find-es "tex" "longtable")
%
\usepackage{edrx21} % (find-LATEX "edrx21.sty")
\input edrxaccents.tex % (find-LATEX "edrxaccents.tex")
\input edrx21chars.tex % (find-LATEX "edrx21chars.tex")
%\input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex")
\input edrxgac2.tex % (find-LATEX "edrxgac2.tex")
%\input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex")
%
% (find-es "tex" "geometry")
\usepackage[paperheight=30cm, paperwidth=20cm, %landscape,
top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot
]{geometry}
\begin{document}
Cálculo 2:
Os meus planos de curso pra Cálculo 2 e Cálculo 3 em 2022.2 estão
aqui:
\ssk
{\footnotesize
% (c2m222plcp 2)
% http://anggtwu.net/LATEX/2022-2-C2-plano-de-curso.pdf
\url{http://anggtwu.net/LATEX/2022-2-C2-plano-de-curso.pdf}
% (c3m222plcp 2)
% http://anggtwu.net/LATEX/2022-2-C3-plano-de-curso.pdf
\url{http://anggtwu.net/LATEX/2022-2-C3-plano-de-curso.pdf}
}
\msk
\begin{tabular}{llp{9cm}}
& & 1. Integração. \\
13-16 & 13-16 & 1.1. Somas de Riemann. \\
1-2 & 1-2 & 1.2. Integração definida. \\
1-2,19 & 1-2,19 & 1.3. Teorema Fundamental do Cálculo. \\
19 & 19 & 1.4. Cálculo de áreas. \\
& & 2. Técnicas de integração. \\
10 & 10 & 2.1. Integração por substituição. \\
6 & 6 & 2.2. Integração por partes. \\
11-12 & 11-12 & 2.3. Integração por substituição trigonométrica. \\
9 & 9 & 2.4. Integração de funções racionais por frações parciais. \\
& & 3. Aplicações de integral. \\
22 & não & 3.1. Comprimento de arcos. \\
22 & 22 & 3.2. Cálculo de volume de sólidos de revolução. \\
20 & não & 4. Integrais impróprias. \\
& & 5. Equações diferenciais lineares de 1a ordem. \\
não & não & 5.1. Classificação. \\
23-25 & 23-25 & 5.2. Solução geral e solução particular. \\
23-24 & 23-24 & 5.3. Equação de variáveis separáveis. \\
30 & 30 & 5.4. Equações diferenciais exatas: fator integrante. \\
& & 6. Equações diferenciais lineares de ordem $n$. \\
não & não & 6.1. Classificação. \\
25-26 & 25-26 & 6.2. Equações diferenciais lineares homogêneas de 2a ordem com coeficientes constantes. \\
25-26 & 25-26 & 6.3. Equações diferenciais lineares homogêneas de ordem $n$ com coeficientes constantes. \\
não & não & 6.4. Equações diferenciais lineares não homogêneas de ordem $n$ com coeficientes constantes. \\
não & não & 6.4.1. Método dos coeficientes a determinar. \\
não & não & 6.4.2. Método das variações dos parâmetros. \\
\end{tabular}
\newpage
%\hspace*{-4cm}
\begin{tabular}{lllp{9cm}}
1 & 1 & 24/ago & Revisão de diferenciação. \\
2 & 2 & 25/ago & Integral definida, integral como área, introdução aos TFCs, propriedades da integral. \\
3 & 3 & 31/ago & Revisão de como justificar cada passo de uma demonstração. \\
4 & 4 & 01/set & Definição de solução de EDO. Integração como EDO. Integral indefinida. \\
5 & 5 & 07/set & \it feriado. \\
6 & 6 & 08/set & Integração por partes. \\
7 & 7 & 14/set & \it Esta aula será reposta em 26/set. \\
8 & 8 & 15/set & \it Esta aula será reposta em 04/out. \\
9 & 9 & 21/set & Frações parciais. \\
10 & 10 & 22/set & Mudança de variáveis. Integrais de potências de senos e cossenos. \\
10.5 & 10.5 & 26/set & \it Aula de reposição (14:00-16:00, container 16): exercícios, revisão e dúvidas. \\
11 & 11 & 28/set & Substituição trigonométrica. \\
12 & 12 & 29/set & Substituição trigonométrica. \\
12.5 & 12.5 & 04/out & \it Aula de reposição (16:00-18:00, container 16): exercícios, revisão e dúvidas. \\
13 & 13 & 05/out & Somas de Riemann. \\
14 & 14 & 06/out & Somas de Riemann. \\
15 & 15 & 12/out & \it feriado. \\
16 & 16 & 13/out & Somas de Riemann. \\
17 & 17 & 19/out & \it Agenda Acadêmica. \\
18 & 18 & 20/out & \it Agenda Acadêmica. \\
19 & 19 & 26/out & TFC1 e TFC2. Mudança de variável na integral definida. \\
20 & 20 & 27/out & Funções não integráveis. Integrais impróprias. \\
21 & 21 & 02/nov & \it Feriado. \\
22 & 22 & 03/nov & Volume de sólidos de revolução. Comprimento de arco. \\
23 & 23 & 09/nov & Campos de direções. EDOs com variáveis setaráveis. \\
24 & 24 & 10/nov & Condições iniciais. \\
25 & 25 & 16/nov & EDOs lineares de ordens 1 e 2 com coeficientes constantes. \\
26 & 26 & 17/nov & Espaço de soluções. A álgebra das funções infinitamente diferenciáveis de $\R$ em $\R$. \\
27 & 27 & 23/nov & Revisão de números complexos. \\
28 & não & 24/nov & \it Soluções reais para o problema da vibração amortecida. (Jogo da Copa)\\
29 & 29 & 30/nov & P1. \\
30 & 30 & 01/dez & EDOs exatas. \\
31 & 31 & 07/dez & P2. \\
32 & 32 & 08/dez & VR. \\
33 & 34 & 14/dez & Revisão e dúvidas. \\
34 & 35 & 15/dez & VS. \\
\end{tabular}
\GenericWarning{Success:}{Success!!!} % Used by `M-x cv'
\end{document}
% Local Variables:
% coding: utf-8-unix
% ee-tla: "caep"
% End: