1 Examples of J-operators

2 The sandwich lemma

The sandwich lemma says that if $P \leq Q \leq P^*$, then $P = Q^*$:

$$\frac{P \leq Q \quad Q \leq P^*}{P^* = Q^*} \quad Sa \quad := \quad \frac{\frac{P \leq Q}{P^* \leq Q^*} \quad Mo}{\frac{Q \leq P^*}{Q^* \leq P^{**}}} \quad Mo}{P^* = Q^*}$$

Let's use the notation of closed interval, [P, R], for the set of all points between P and R (in the partial order \leq of the ZHA):

$$[P,R] := \{ Q \in \Omega \mid P \le Q \le R \}$$

We saw that $Q \in [P, P^*]$ implies P = Q, which means that all points in $[P, P^*]$ are *-equal, and that the equivalence class $[P]^*$ contains at least the set $[P, P^*]$ – which is never empty, because M1 tells us that $P \leq P^*$, so

$$\begin{split} P &\leq P \leq P^* \rightarrow P \in [P,P^*], \\ P &\leq P^* \leq P^* \rightarrow P^* \in [P,P^*]. \end{split}$$

Let's call a non-empty set of the form [P, R] a lozenge, even though it may inherit some dents from the ambient ZHA, as here:

$$[11, 33] = (diagram)$$

If $P_1^* = P_2^*$, then the equivalence class $[P_1]^*$ (= $[P_2]^*$) contains the union of the lozenges $[P_1, P_1^*]$ and $[P_2, P_2^*] = [P_2, P_1^*]$. If $42^* = 33^* = 14^* = 56$, then

$$[42]^* = [33]^* = [14]^* \supseteq$$

 $[42, 56] \cup [33, 56] \cup [14, 56]$

so each equivalence class $[P]^*$ is a union of lozenges or the form $[-, P^*]$; and if $[P_1]^* = \{P_1, P_2, \dots, P_n\}$ then $[P_1]^* = [P_1, P_1^*] \cup [P_2, P_1^*] \cup \dots \cup [P_n, P_1^*]$.

Let's go back to the example above, where $42^* = 33^* = 14^* = 56$. We have

$$((42\&33)\&14)^* = (42\&33)^*\&14^* = (42^*\&33^*)\&14^* = (56\&56)\&56 = 56,$$

so 42&33&14 is in the same equivalence class as 42, 33, and 14. We have $[12, 56] \subseteq [42]^* = [33]^* = [14]^*$, which means this shape:

(diagram)

(...)

$$\frac{P = {}^{*}Q}{P \& Q = {}^{*}P} \ ECC \& \ := \ \frac{\frac{P^{*} = Q^{*}}{P^{*} \& Q^{*} = P^{*}}}{(P \& Q)^{*} = P^{*}} \ M3$$

$$\frac{P = Q}{P = P \lor Q} ECC \lor := \frac{P \leq P \lor Q}{P = (P \lor Q) *} \frac{\overline{Q} \leq Q^*}{P \lor Q \leq P^*} \frac{M1}{Q \leq P^*} \frac{Q^* = P^*}{Q \leq P^*} Sa$$

3 How J-operators interact with connectives

4 There are no Y-cuts

A small lozenge in a ZHA is four points like $\{...\}$ or $\{...\}$ in the figure below; we will write these small lozenges as $^{12}_{3,56}$ and

When the points in a small lozenge L belong to four different equivalence classes, like in ..., we say that L is an X-cut; when they belong to three different equivalence classes, like ... or ..., a Y-cut; two different equivalence classes, like ... or ..., an I-cut; one equivalence class, a no-cut.

We saw in section 2 that equivalence classes are lozenges. Let's now see that the frontiers between equivalence classes can't be more irregular than the examples in section 1.

Every way of dividing a ZHA A into lozenges induces an operation $\cdot^*: A \to A$ that takes each element to the top element of its equivalence class; this ' \cdot^* ' obeys axiom M1 and M2...

We need two lemmas:

5 Partitions into contiguous classes

A partition of $\{0, \ldots, n\}$ into contiguous classes (a "picc") is one in which this holds: if $a, b, c \in \{0, \ldots, n\}$, a < b < c and $a \sim c$, then $a \sim b \sim c$. So, for example, $\{\{0, 1\}, \{2\}, \{3, 4, 5\}\}$ is a partition into contiguous classes, but $\{\{0, 2\}, \{1\}\}\}$ is not.

A partition of $\{0,\ldots,n\}$ into contiguous classes induces an equivalence relation $\cdot \sim_P \cdot$, a function $[\cdot]_P$ that returns the equivalence class of an element, a function

$$\begin{array}{cccc} \cdot^P : & \{0,\dots,n\} & \to & \{0,\dots,n\} \\ & a & \mapsto & \max{[a]_P} \end{array}$$

that takes each element to the top element in its class, a set $St_P := \{a \in \{0, ..., n\} \mid a^P = a\}$ of the "stable" elements of $\{0, ..., n\}$, and a graphical representation with a bar between a and a+1 when they are in different classes:

$$01|2|345 \equiv \{\{0,1\},\{2\},\{3,4,5\}\},\$$

which will be our favourite notation for partitions into contiguous classes from now on.

6 The algebra of piccs

When P and P' are two piccs on $\{0,\ldots,n\}$ we say that $P \leq P'$ when $\forall a \in \{0,\ldots,n\}.a^P \leq a^{P'}$. The intuition is that $P \leq P'$ means that the graph of the function \cdot^P is under the graph of $\cdot^{P'}$:

This yields a partial order on piccs, whose bottom element is the identity function $0|1| \dots |n|$, and the top element is $01 \dots n$, that takes all elements to n.

It turns out that the piccs form a (Heyting!) algebra, in which we can define \top , \bot , &, \lor , and even \rightarrow .

The operations & and \vee are easy to understand in terms of cuts (the "|"s):

$$\begin{array}{lcl} \operatorname{Cuts}(P\vee Q) & = & \operatorname{Cuts}(P)\cap\operatorname{Cuts}(Q) \\ \operatorname{Cuts}(P\&Q) & = & \operatorname{Cuts}(P)\cup\operatorname{Cuts}(Q) \end{array}$$

The stable elements of a picc on $\{0,\ldots,n\}$ are the ones at the left of a cut plus the n, so we have:

$$\begin{array}{lcl} \operatorname{St}(P\vee Q) & = & \operatorname{St}(P)\cap\operatorname{St}(Q) \\ \operatorname{St}(P\&Q) & = & \operatorname{St}(P)\cup\operatorname{St}(Q) \end{array}$$

Here is a case that shows how $\cdot^{P\vee Q}$ can be problematic. The result of $a^{P\vee Q}$ must be stable by both P and Q. Let:

 $\begin{array}{rcl} E & := & 01|2|34|56|789 \\ O & := & 01|23|45|6|789 \\ E \lor O & = & 01|23456|789 \\ E \& O & = & 01|2|3|4|5|6|789 \end{array}$

We can define $a^{P\&Q} := a^P\&a^Q$, and this always works. But $a^{P\lor Q} := a^P\lor a^Q$ does not, we may have to do something like iterating the two functions many times:

The " \rightarrow " in the algebra of piccs will not be relevant to us, so we will not discuss it.

7 ZQuotients

A ZQuotient for a ZHA with top element 46 is a partition of $\{0, \ldots, 4\}$ into contiguous classes (a "partition of the left wall"), plus a partition of $\{0, \ldots, 6\}$ into contiguous classes (a "partition of the right wall"). Our favourite short notation for ZQuotients is with "/"s and "\"s, like this, "4321/0 0123\45\6", because we regard the cuts in a ZQuotient as diagonal cuts on the ZHA. The graphical notation is this (for 4321/0 0123\45\6 on \clubsuit):

which makes clear how we can adapt the definitions of $\cdot \sim_P \cdot$, $[\cdot]_P$, \cdot^P , St_P , which were on (one-dimensional!) PICCs in section 5, to their two-dimensional counterparts on ZQuotients. If P is the ZQuotient of the figure above, then:

$$\begin{array}{lll} 34\sim_P 25 & \text{is} & \text{true,} \\ 23\sim_P 24 & \text{is} & \text{false,} \\ & [12]_P & = & \{11,12,13,22,23\}, \\ & 22^P & = & 23, \\ & \text{St}_P & = & \{03,04,23,45,46\}. \end{array}$$

8 The algebra of ZQuotients

The ideas of the last section apply to ZQuotients, with a few adjustments. The

$$\mathsf{St}(P\&Q) = \mathsf{St}(P) \cup \mathsf{St}(Q)$$

would mean, for P = 54/32/10 and Q = 01/23/45, that

$$St(P_c uts) = St($$

9 2-Column graphs

A 2-column graph is a graph like the one in the picture below, composed of a left column $4_- \rightarrow 3_- \rightarrow 2_- \rightarrow 1_- \rightarrow 0_-$, a right column $6_- \rightarrow 5_- \rightarrow 4_- \rightarrow 3_- \rightarrow 2 \rightarrow 1_- \rightarrow 0_-$, and some intercolumn arrows: $4_- \rightarrow 2$, $1_- \rightarrow 3$ going from the left column to the right column, $5_- \rightarrow 4_-$ going from the right column to the left column.

$$\begin{pmatrix} -6 \\ & & \\ & & \\ -5 \\ & & \\ 4 \\ & & \\ 4 \\ & & \\ 4 \\ & & \\ 4 \\ & & \\ 3 \\ & & \\ 4 \\ & & \\ 2 \\ & & \\ 2 \\ & & \\ 1 \\ & & \\ -1 \end{pmatrix}$$

A compact way to specify a 2-column graph is this: (left height, right height, left-to-right arrows, right-to-left arrows). In the graph of the example this is $(5,7,\{4_\to _2,1_\to _3\},\{4_\leftarrow _5\})$.

We need to attribute a precise meaning for $0_-, \ldots, 4_-$ and $0_-, \ldots, 6_-$. For the moment let's use this one, in which they are points in \mathbb{N}^2 with x = 0 or x = 2:

$$\begin{array}{ccc} \vdots & & \vdots \\ 3 _ := (0,3) & _4 := (2,4) \\ 2 _ := (0,2) & _2 := (2,2) \\ 1 _ := (0,1) & _1 := (2,1) \\ 0 _ := (0,0) & _0 := (2,0) \end{array}$$

Let's write $(5, 7, \{...\}, \{...\})^*$ for the transitive-reflexive closure of the graph, and $\mathcal{O}(5, 7, \{...\}, \{...\})$ for its order topology.

Every open set of a 2-column graph is made of a pile of a elements at the bottom of the left column and a pile of b elements at the bottom of the right column. If we write these "2-piles" as ab,

$$\left(\begin{smallmatrix} 0 & 1 \\ \frac{1}{1} \end{smallmatrix} \right) \equiv \{1_, _3, _2, _1\} \equiv 13$$

the connection with ZHAs becomes clear:

$$34 \equiv \begin{pmatrix} \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$33 \equiv \begin{pmatrix} \frac{1}{1} & \frac{0}{1} \end{pmatrix} \quad 24 \equiv \begin{pmatrix} 0 & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$32 \equiv \begin{pmatrix} \frac{1}{1} & \frac{0}{1} \end{pmatrix} \quad 23 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} \end{pmatrix} \quad 14 \equiv \begin{pmatrix} 0 & \frac{1}{1} \\ \frac{1}{1} & \frac{0}{1} \end{pmatrix}$$

$$31 \equiv \begin{pmatrix} \frac{1}{1} & \frac{0}{1} \end{pmatrix} \quad 22 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} \end{pmatrix} \quad 13 \equiv \begin{pmatrix} 0 & \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$30 \equiv \begin{pmatrix} \frac{1}{1} & \frac{0}{1} & \frac{1}{1} \end{pmatrix} \quad 21 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix} \quad 03 \equiv \begin{pmatrix} 0 & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$20 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} & \frac{1}{1}$$

What happens if we add a left-right arrow, for example $2_{-} \rightarrow -2$?

$$(3,4,\{2_{-}\to 2\},\{\}) = \begin{pmatrix} & 4\\ & & \\ 3_{-} & & 3\\ & & & \\ 2_{-}\to 2\\ & & & \\ 1_{-} & & 1 \end{pmatrix}$$

Its effect is to make all the 2-piles of the form $\begin{pmatrix} \hat{i}_1 & \hat{i}_2 \\ \hat{j}_1 & \hat{j}_2 \end{pmatrix}$, which are $20 \equiv \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $21 \equiv \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $30 \equiv \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. We have:

$$34 \equiv \begin{pmatrix} \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$33 \equiv \begin{pmatrix} \frac{1}{1} & \frac{0}{1} \end{pmatrix} \quad 24 \equiv \begin{pmatrix} 0 & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$32 \equiv \begin{pmatrix} \frac{1}{1} & \frac{0}{1} \end{pmatrix} \quad 23 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} \end{pmatrix} \quad 14 \equiv \begin{pmatrix} 0 & \frac{1}{1} \\ 0 & \frac{1}{1} \end{pmatrix}$$

$$22 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} \end{pmatrix} \quad 13 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{1}{1} \end{pmatrix} \quad 04 \equiv \begin{pmatrix} 0 & \frac{1}{1} & \frac{1}{1} \end{pmatrix}$$

$$12 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{0}{1} & \frac{0}{1} \end{pmatrix} \quad 03 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{0}{1} & \frac{0}{1} \end{pmatrix}$$

$$11 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{0}{1} & \frac{0}{1} & \frac{0}{1} & \frac{0}{1} \end{pmatrix}$$

$$10 \equiv \begin{pmatrix} 0 & \frac{0}{1} & \frac{0}{$$

Graphica like this, we see that a topology like $\mathcal{O}(3,4,\{\},\{\})$ is a ZHA:

