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Abstract

(For the FMCS talk)

We will present a logic (system DNC) whose terms represent categories, ob-
jects, morphisms, functors, natural transformations, sets, points, and functions,
and whose rules of deduction represent certain constructive operations involv-
ing those entities. Derivation trees in this system only represent the “T-part”
(for “terms” and “types”) of the constructions, not the “P-part” (“proofs” and
“propositions”): the rules that generate functors and natural transformations
do not check that they obey the necessary equations. So, we can see deriva-
tions in this system either as constructions happening in a “syntactical world”,
that should be related to the “real world” in some way (maybe through meta-
theorems that are yet to be found), or as being just “skeletons” of the real
constructions, with the P-parts having been omitted for briefness.

Even though derivations in DNC tell only half of the story, they still have a
certain charm: DNC terms represent “types”, but a tree represents a construc-
tion of a lambda-calculus term; there’s a Curry-Howard isomorphism going on,
and a tree can be a visual help for understanding how the lambda-calculus term
works — how the data flows inside a given categorical construction. Also, if we
are looking for a categorical entity of a certain “type” we can try to express it
as a DNC term, and then look for a DNC “deduction” having it as its “con-
clusion”; the deduction will give us a T-part, and we will still have to go back
to the standard language to supply a P-part, but at least the search has been
broken in two parts...

The way to formalize DNC, and to provide a translation between terms in its
“logic” and the usual notations for Category Theory, is based on the following
idea. Take a derivation tree D in the Calculus of Constructions, and erase all
the contexts and all the typings that appear in it; also erase all the deduction
steps that now look redundant. Call the new tree D’. If the original derivation,
D, obeys some mild conditions, then it is possible to reconstruct it — modulo
exchanges and unessential weakenings in the contexts — from D’, that is much
shorter. The algorithm that does the reconstruction generates as a by-product
a “dictionary” that tells the type and the “minimal context” for each term that
appears in D’; by extending the language that the dictionary can deal with we
get a way to translate DNC terms and trees — and also, curiously, with a few
tricks more, and with some minimal information to “bootstrap” the dictionary,
categorical diagrams written in a DNC-like language.
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The “generic point” notation
What would be the natural name for a variable in...

- a A = EJa)
B s b B = E[l]
AXB - ab A x B =Ela,b = Ela] x E[Y
BA - a—b B4 = E[a — b] = E[b]El

We will allow strange names for variables and terms
and we will have a dictionary to translate these names
into something precise (in the Calculus of Constructions).

‘E’ is pronounced as “the space of”.
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Functors and NTs in this notation

Choose sets A and B, and a function B % A.

In GP/DNC notation we write Hom(A, —) as ¢ = (a — x).

Note that from the name “z = (a — z)” we can extract both the action on
objects, E[z] — Ela — z], and the action on morphisms, (z — y) — ((a —
z) = (a—y))

r == (a+— x) X +—=Hom(4, X)
%l [ [ ‘/Hom(A,f)
y—>(amy) ¥ Hom(4Y)

x> ((b— 2) = (a+ x)) is a natural transformation going from z = (b + x)
to x = (a— x).
It works as E[z] — ((b — z) — (a — z)), but it also obeys a naturality

condition...
\ Hom(B/\ Hom(A,—)
(a— x)

Hom(B, X) Hom(A4, X)

b z)——

2002cms (typeset 2002junl7 23:33) Edrx http://angg.twu.net/



What is a functor?
A functor F': A — B is a package containing:

FO FoA : ObjSB
Fa FayA'A"(A" L A7) Homp (Fo(A'), Fo(A"))
FMA/A//(A/ i) AII) — (FO(AI) FL)f) FO(A”))
and two “proofs”:

e that F respects composition, Fis(k o h) = F(k) o Fpr(h)
e that F' respects identities, Firs(ida) = id g, (a)-

A proto-functor only has Fp and F,.
The prefix “proto” will always mean “without the terms for equalities”.

A category A is a package containing:

Objsa
Homa Homp A’A”
idA idAA : HomA AA

oA OAA/A//A///(A/ h A//)(A// *, A///) - Hom A’A™

plus three “proofs” that say that o is associative and respects ida .
A proto-category only has Objs,, Homa, ida, o4,
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Toy example: Go F

Ola!] b= bC
O[aF ]
Ola] — O[af"%) !
O[a]]! a=a”
(a = a™)(O[af]) b=0b“
(b= 0%)((a = a")(O[a"]))
AO[a].(b = b%)((a = af)(0[a’]))
(a = af"G)o := \0la):Objs.(b = b)o((a = af)o(0[a’]))

F(4) G
G(F(A))
NA.G(F(A))

1

[a/ — a//]l a = CLF

h
ot s o't b= b¢ ThY

F(h) G

(= E): 1 G(F(h))
’ Ma.G(F(h))

B!

FG FG
CL/ —s a//
a=af¢

[ —a"]! a=af

(a=af)(a +—a") b=bY
(b= b%)((a = a)(a' — a")) )
Ma' +— a").(b=b%)((a = a)(a’' — a"))
AO[a']:Objss . AO[a”]:Objsy .
A(a’ — a'):(Homa O[a']Oa"]).
(b= b9)n((a = a")oO[d])((a = a")oOla"])
((a = a”)xO[a]O[a"](a’ — a"))

Fur

a —ad a=adF a'—d" a=a"

1F nkF

h F
J Y = a b= bG nkF mF

a’” —oa b= bC

FG FG FG FG
a’ — a a — a'

G(F(h))
1FG a///FG

a —

a/ —s al/ a// —s a/l/

a' —a'" a=af

- . koh F
! " k

a’ —a b= bC

FG FG
a — a'
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Why DNC? Two conjectures
(name — derivation — A-term...)

Conjecture 1: the naturality conditions do come for free.

Take a name for a functor — say, a = a¥'“, with hyps. a = o and b = b¢
— and a natural construction for a (proto) entity with that name.

Then that construction can be lifted from the syntactical world to the real
world — i.e., we can “prove” the missing “prf” terms.

Conjecture 2: given a name, we can effective obtain the natural
entity with that name, or prove that it doesn’t exist, or that it exists
but is not unique.

That is, we have an algorithm for proof-search that does that; and maybe also
some purely syntactical criteria that can say “no natural entity with that name
can exist” or “there will be non-equivalent constructions”.
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Adjunctions as DNC diagrams
LARis (a;0) > ((a* +— b) < (a > b))
(=) x BA()? is (a:¢) > ((a,br— ) = (a = (b~ 0)))

“)xB
ol <=4 a,b(<):xa
b:R>bR c?b'—w

The functor from Sub(A) to Sub(A x B) (A, B sets, for example) has a left
adjoint 3 and a right adjoin V.

The weakening functor induced by I';a +— T in a “good” codomain fibration
has a left adjoint ¥ and a right adjoint II.

. Lap\  (Lap
al3p.P(ab) <= (@, )| p(a,b) ! = l
T T Iy TI'a
Iyq Lya,q
alg@ = (a,b)|qw) L= |
T T I Ta
T, (arr) Ta,r
alve.R(a,b) 7= (@, 0)|R(a,b) ! 5 l
r T'a
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The proof of the Yoneda Lemma in DNC

1 2

o 2] [ 2]
Ol [0 e o
———— Homc¢
Ela — 2] (a—2')— (a—2") .
O[z] — E[a — 1] r = (a+ 1) (= D2
Old]
x=(a— x) re
Oz = (a+— x)] Oz = 2zt Homg,c
Elp > (@ o) = a")] )
O Ol (o) rab)
ara (a+ a) v a®
: 1
(@ = ((a—2) = a’))—af
Oz =a"] =~ 0, [0,
0, z=2a" Elar ] | Olz=az" .
Ela®] a—z U r = zf o
oF [s] oF — oF
(a i) — ol !
2 (@ o) - 2)
o (@ (@ 7)o aT))
[0.]' [Ofz = ="]]! [0.]' [Ofz = ="]]!
a" = (25 ((a—2) = 2") (@5 ((ama)-a)) - a”
e (@ (0 2) - 2P))

1
F

(a2 = 2") = (@ o (@5 ((am @) = 2))
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The proof of the Yoneda Lemma in DNC (2)

...and if we want to prove that the functors implicit in the outer ‘>’ of (a; =
) 5 (of o (2 2 ((a — z) — zF))) are really (proto!) functors, we need
this:

(= 2F) — (z = =F")!

. - - ren
[a/ — a//]l T = (CL’F — I‘F )
a/F( s a//F//
1
(a;2 = 2F) = af
[0.]'
r=(a—x)
Oz = (a+— x)] [Ofz = zF)]!
HOmSetC
B (@n)mah)]
Ola;z = ¥ — Elz > ((a — z) — 7))
@ = a1 o —a]t [0 [¢ % (0 2) 2P
a —x (a/ — z) — ot (0.2 [z (2F — 2F"))4
:L,F/ xF, N xF//
xF//
" ]‘
(a// — ﬂf) — .

" (= 1);2

5 (0 — )2

(¢ 5 (@ = 2) = 2) = (@ 5 (@ = ) = 2™))

. (= 1);4
(a;2 = 2F) = (= ((a— z) — 2F))

2002cms (typeset 2002junl7 23:33) Edrx http://angg.twu.net/



11

A crash course on the Calculus of Constructions

A countable set of variables, e.g. {a,b,c,... ,A,B,C,...}.

Sorts: *, .

Axioms on sorts: F x:[.

From that we define pre-terms, pre-judgements and (valid) derivations.
Terms and judgements are pre-terms and pre-judgements that

can appear in valid derivations.

Example of a term, with a typing: (AX:* .x:X.2):(I1X: * Ilz: X.X)
(the polymorphic identity)
“Na:Ab”:
A a function that expects a value
a  for the variable a
:A (it must be a member of A)
.b and returns b
“ITa:A.B”:
II the space of the functions that expect
a:A  “a”s (members of A)
B and return for each one a member of B

We can have dependent types! See the example above.
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A crash course on CC: (pre-)judgments
“riiAr, 0 A, Ay BT

If we have chosen a value for z; (a member of A;),
a value for 2o (a member of As), etc,

then we know the value of ¢ (a member of T').

Fact:

“x1:A1(:51), -+, Xt An(0Sy) B ET:

Every variable is two levels below a sort.

Every term is either a sort, or one or two levels below a sort.

operator : kind : O
element : set : *

i

If we know the “class” of each variable we know the class

of every term. Trick:
()\aR‘2:AR‘1 .bS-Q)S-Q (fS—QaR-2)S-2

(HaR‘zzAR'l.BS'l)S'l

The rules of CC have “variations” for operating on different levels:

a,a’ : A * I1L..,
b, fa' : B * A s
fy(Aa:Ab) : (Ila:A.B) * apD,.
a,a’ A O g,
b, fa' : B * Al
fy(Aa:Ab) : (Ia:A.B) * apPO.
a,a : A * 1.0,
b, fa’ B O )\*D,
£y (Aa:A.b) (Tla:A.B) O app.
a, a A O H|:||:|,
b, fa’ : B O )\EIEIv
fy(Aa:Ab) : (Tla:A.B) O appon
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A crash course on CC: the rules
Rules of the system: ax, s, II, A\, app, weak, conv
(conv is not shown; if a:4 and A =5 A’ then a:A’)

T+ AR T,a:AF B:S

't (Tla:A.B):S Hrs Fed
Ia:AFb:B TF (Ila:A.B):S \ ' AR .
It (Aa:A.b):(Ila:A.B) s IaAF a:A f
'k f:(Tla:A.B) TFd:A — IN'AtcaC T'FAR weak
't fa':Bla :=a’] Ia:AAFcC
R, S sorts; a variable; I, A contexts
All other letters (a’, A, b, B, ¢, C, f) represent terms.
A derivation in CC:
Fx FsO weak, Fox: s
Fox:O - Xox B ox:d Xk Xix weak
Xk B Xk Xex, o X *
[

Xox b (Tl X .x):0
Xox, F:(Tx: X +) B F:(Ta: X %)

SO

Most of the tree is “bureaucracy” (weakings, for example)

typing typing typing

~ = ~ = =

xy A, ... x, A, BT
context
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Fact: (abbreviated CC + dictionary) formalizes DNC
Take a “good” tree with minimal contexts, for example,

F %
ok B9 Tl . 0

Tox b (ITid #):00 S*D Tt T 150 ,

F 0 T AT ) F AT 2 Tl &)
———— S0 : . : app,o; 1
I b Ik Iox, Ac(T0i:1 %), 021 = Adcx

o) A:(T0i:1 %) b (TT3:1. A7)

Iix Ac(IDa:d %), f:(Ti:. A7) = f:(TTi:1. Ad)

}C2

]Cl

IL; 2

Sx

erase its contexts, and put in the dictionary all the remaining typings:

*
[50]
I:x x:0 I *:0 o1
(M:l0 7 T sl o
* . A:(TT3:1 %) - 10 [s-] chtlonary:
— 50 e app.; 1 i1 %

s v .,.:2 A:(Ii:I.x) : O
(Ii:1. Ad) % . ’ Ai - x
f:(Ii:I.Ai) £ (i Ad) : x

...now erase the typings too:
*
— [SD]C2 _ —
I I * 5]
Mils 0 17
- A S0 3 [5.] , Dicjtionary:
< S0 > apb.os vk
I Ai ,,:2 A:(Ti:Ix) : O
i:1. Ai . ' Ai s *
f : £ (i1 Ad) : %

Fact: it is possible to reconstruct the original tree from this one.
It is also possible to discard the dictionary and reconstruct it just from
that last tree.
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Fact: (abbreviated CC + dictionary) formalizes DNC (2)

T [el1C2 _ _
7 [sal™ e
Wil 20T [SD]Q
" 1 S| i [s4] Dictionary:
— 5O — app,o; 1 i1
I Ai IL,,:2 A:(Ti:I.x) : O
IIi:1. Ai ' Ai:x
f * [ (Ti:1. Ad) : %

Next step: replace the terms in a tree with names for them in the GP notation;
let the dictionary translate some terms as applications — example, b --» (a +—

b)(a).

e _
B
Efi—ed 7 E[] ol o
R =3 ) R it
Ei[i] O E[a] app.0; Z . g )
. i, i— Ela;] : Efi — ex] : O
Bl al | Ela] = (i — Elad)(i) :
1 a; i a; Eli— a] o x

New variables are introduced only at the “s” rules.

To help keep track of what’s happening, we mark discharges with ‘[-]™’s
and “contractions” with ‘[-]¢"’s.

We can split the tree at the “s” rules — “hypotheses” become entities obtained
by “s” rules.
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Protocategories
(Again: the prefix “proto” always means “without the terms for equalities”).

A protocategory C : Protocatsgg
(where S, R are sorts — typically S = O, R = x)
is a package containing

Objsg : S

Homc Homc AB: R

idc lch : HOHIC AA

oc ocABC(a — b)(b ¢) : Homgc AC

(A, B,C : Objsg)

Notational trick: a +— b: E[a — b],
and the dictionary translates E[a — b] --» Homc AB.

A very special example: Set is a [x-protocategory.
Objsges = * :
Homget := AX: % AY: x (Ilz: X.Y)
idget := AX: x . z: X.x
0get = AX: % AY % A2 %,
Af:(Homget XY).A\g:(Homget Y Z).
Ae:X.g(fx)
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Protocategories: “0”, “Cat”, “—” as morphism
A typical Ox-protocategory:

Objsc : O

Homg : ITO[a):Objsc. IO []:Objsq.*
Ol[d], O[b], O[] : Objsc

like Elz], Bly], Elz] : Objsse, — +

but we don’t have a semantics for “a”, “b”, “c”!!!
Just for Olal, O[b], Olc], (a +— b), (b— ¢), (a — c).

Ty at—=b

NN
in Set in C

New “operator” in the dictionary: Cat —
Cat[z] --» Set, Cat[a] --+ C (OJa]:Objsg)
x—y: E[lz— y] = Elz] — Ely]

a — b : E[a — bl = Homc O[a]O[b]
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A crash course on CC: propositions and proofs
prop[P] is P seen as a proposition.

Naively, prop[P] is the set of proofs of P.

prf[P] : prop[P] : *

Dictionary:
prop[P>Q] --» (IIprf[P]:prop[P].prop|Q])
prf[PoQ] --» (prf[P] — prf[Q])
prop[Ve.P(z)] --» (Ilz:E[z].prop[P(x)])
priVz.P(z)] --+ (x+— prf[P(z)])

To speak “internally” about equality between members of the same set we need
a package of terms, that will be added to contexts...

equality, is a package consisting of:

eq, (eq,Aaa’) : Props
propla = a’] --» eq, Aad’

refl, (refl Aa) : propla = a]
prf[a = a] --» refl, Aa

sim,  (sim.Aad’) : propla = ' >d’ = 4]
prfla = a’ >ad’ = a] --» (sim, Aaa’)

trans, (trans,Aaa’a”) : propla = @’ o(a’ = " 5a = a”)]
prija = d’ o(a’ = "' >a = a”)] --» (trans, Aad’a’”)

f’s.r.equality,, is a package of terms saying that
all functions f:(Tla:A.B) “respect equality”.
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