|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2008lcccs.tex")
% (find-dn4ex "edrx08.sty")
% (find-angg ".emacs.templates" "s2008a")
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008lcccs.tex && latex 2008lcccs.tex"))
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2008lcccs.tex && pdflatex 2008lcccs.tex"))
% (eev "cd ~/LATEX/ && Scp 2008lcccs.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/")
% (find-dvipage "~/LATEX/2008lcccs.dvi")
% (find-pspage "~/LATEX/2008lcccs.pdf")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2008lcccs.ps 2008lcccs.dvi")
% (find-pspage "~/LATEX/2008lcccs.ps")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi")
% (find-pspage "~/LATEX/tmp.ps")
% (ee-cp "~/LATEX/2008lcccs.pdf" (ee-twupfile "LATEX/2008lcccs.pdf") 'over)
% (ee-cp "~/LATEX/2008lcccs.pdf" (ee-twusfile "LATEX/2008lcccs.pdf") 'over)
% (find-LATEX "2008typesystems.tex")
% «.basic-rules» (to "basic-rules")
% «.strong-rules» (to "strong-rules")
\documentclass[oneside]{book}
\usepackage[latin1]{inputenc}
\usepackage{edrx08} % (find-dn4ex "edrx08.sty")
%L process "edrx08.sty" -- (find-dn4ex "edrx08.sty")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\begin{document}
\input 2008lcccs.dnt
%*
% (eedn4-51-bounded)
Index of the slides:
\msk
% To update the list of slides uncomment this line:
\makelos{tmp.los}
% then rerun LaTeX on this file, and insert the contents of "tmp.los"
% below, by hand (i.e., with "insert-file"):
% (find-fline "tmp.los")
% (insert-file "tmp.los")
\tocline {Basic rules} {2}
\tocline {Strong rules} {3}
\def\Eq{¯{Eq}}
\newpage
% --------------------
% «basic-rules» (to ".basic-rules")
% (s "Basic rules" "basic-rules")
\myslide {Basic rules} {basic-rules}
% (find-jacobspage (+ 19 581) "10_ First order dependent type theory")
% (find-jacobspage (+ 19 585) "five basic rules of DTT")
Rules:
%:
%: a|-b:B a|-B=B'
%: ----------------¯{conv}
%: a|-b:B'
%:
%: ^conv
%:
%: a|-B a|-b a,b,c|-d
%: ------¯{proj} --------------¯{subst}
%: a,b|-b a,c|-d
%:
%: ^proj ^subst
%:
%: a,b,b',c|-d a|-B a|-c
%: ------------------¯{contr} ----------¯{weak}
%: a,b,\ov{c}|-\ov{d} a,b|-c
%:
%: ^contr ^weak
%:
%: a,b,c,d|-e a|-*'
%: ----------¯{exch} --- --- -------
%: a,c,b,d|-e |-1 |-* a|-*'=*
%:
%: ^exch ^1 ^* ^*=*
%:
$$\ded{conv} \qquad \ded{proj} \qquad \ded{subst}$$
$$\ded{contr} \qquad \ded{weak} \qquad \ded{exch}$$
$$\ded{1} \qquad \ded{*} \qquad \ded{*=*}$$
Formation rules:
%:
%: a,b|-C a,b|-C a|-B
%: ---------å ---------Æ ---------------¯{Eq}
%: a|-åb:B.C a|-Æb:B.C a,b,b'|-\Eq_B[b=b']
%:
%: ^Pi ^Sigma ^Eq
%:
$$\ded{Pi} \qquad \ded{Sigma} \qquad \ded{Eq}$$
% (find-jacobspage (+ 19 586) "associated introduction and elimination rules")
Intros and elims:
%:
%: a,b|-c a|-b a|-b|->c
%: --------ð --------------¯{app}
%: a|-b|->c a|-c
%:
%: ^lambda ^app
%:
%: a,b|-C a,b,c|-d
%: ------------¯{pair} ----------¯{unpack.weak}
%: a,b,c|-(b,c) a,(b,c)|-d
%:
%: ^pair ^unpack.weak
%:
%: a|-B a,b,b',c|-D a,b,\ov{c}|-\ov{d}
%: ----------¯{refl} ---------------------------------¯{with.via.weak}
%: a,b|-(b=b) a,b,b',(b=b'),c|-d
%:
%: ^refl ^withvia.weak
%:
$$\ded{lambda} \qquad \ded{app}$$
$$\ded{pair} \qquad \ded{unpack.weak}$$
$$\ded{refl} \qquad \ded{withvia.weak}$$
% (find-jacobspage (+ 19 587) "10.1.1. Example")
Example (10.1.1):
%:
%: a,b'|-C_{b'} a,b|-C_b
%: ================== ------------
%: a|-\bb' a,b,b',c_b|-C_{b'} a,b,c_b|-c_b
%: ========= ---------------------------------
%: a,b|-\bb' a,b,b',(b=b'),c_b|-c_{b'}
%: -----------------------------------
%: a|-\bb a,b,(b=\bb'),c_b|-c_{\bb'}
%: ---------------------------------------
%: a|-(\bb=\bb') a,(\bb=\bb'),c_\bb|-c_{\bb'}
%: ----------------------------------------------
%: a|-c_\bb a,c_\bb|-c_{\bb'}
%: -----------------------------------
%: a|-c_{\bb'}
%:
%: ^example-10.1.1
%:
$$\ded{example-10.1.1}$$
\newpage
% --------------------
% «strong-rules» (to ".strong-rules")
% (s "Strong rules" "strong-rules")
\myslide {Strong rules} {strong-rules}
Strong rules:
%:
%: a,(b,c)|-D a,b,c|-d
%: ---------------------¯{unpack.strong}
%: a,(b,c)|-d
%:
%: ^unpack.strong
%:
%: a,b,b',(b=b')|-C a,b|-\ov{\ov{c}}
%: -----------------------------------¯{with.via.strong}
%: a,b,b',(b=b')|-c
%:
%: ^with.via.strong
%:
$$\ded{unpack.strong}$$
$$\ded{with.via.strong}$$
Proposition: the strong rules are equivalent to:
%:
%: a|-(b,c) a|-(b,c)
%: -------- --------'
%: a|-b a|-c
%:
%: ^pi ^pi'
%:
%: a|-(b=b') a|-(b=b)'
%: ---------¯{eq.ext} ---------------¯{eq.refl}
%: a|-b=b' a|-(b=b)'=(b=b)
%:
%: ^eq.ext ^eq.refl
%:
$$\ded{pi} \qquad \ded{pi'}$$
$$\ded{eq.ext} \qquad \ded{eq.refl}$$
Proof 1:
%:
%: a,b|-C
%: --------
%: a,b,c|-c a,b|-C
%: ==========¯{unp.w} --------
%: a,(b,c)|-c a,b,c|-c
%: =============================
%: a,(b,c)|-C a,b,c|-c
%: ----------------------------
%: a,(b,c)|-c
%:
%: ^proof-1
%:
$$\ded{proof-1}$$
%*
\end{document}
% Local Variables:
% coding: raw-text-unix
% ee-anchor-format: "«%s»"
% End: