|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009-2-C4-prova-1.tex")
% (find-dn4ex "edrx08.sty")
% (find-angg ".emacs.templates" "s2008a")
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-prova-1.tex && latex 2009-2-C4-prova-1.tex"))
% (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-2-C4-prova-1.tex && pdflatex 2009-2-C4-prova-1.tex"))
% (eev "cd ~/LATEX/ && Scp 2009-2-C4-prova-1.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/")
% (defun d () (interactive) (find-dvipage "~/LATEX/2009-2-C4-prova-1.dvi"))
% (find-dvipage "~/LATEX/2009-2-C4-prova-1.dvi")
% (find-pspage "~/LATEX/2009-2-C4-prova-1.pdf")
% (find-pspage "~/LATEX/2009-2-C4-prova-1.ps")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009-2-C4-prova-1.ps 2009-2-C4-prova-1.dvi")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009-2-C4-prova-1.ps 2009-2-C4-prova-1.dvi && ps2pdf 2009-2-C4-prova-1.ps 2009-2-C4-prova-1.pdf")
% (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi")
% (find-pspage "~/LATEX/tmp.ps")
% (ee-cp "~/LATEX/2009-2-C4-prova-1.pdf" (ee-twupfile "LATEX/2009-2-C4-prova-1.pdf") 'over)
% (ee-cp "~/LATEX/2009-2-C4-prova-1.pdf" (ee-twusfile "LATEX/2009-2-C4-prova-1.pdf") 'over)
\documentclass[oneside]{book}
\usepackage[latin1]{inputenc}
\usepackage{edrx08} % (find-dn4ex "edrx08.sty")
%L process "edrx08.sty" -- (find-dn4ex "edrx08.sty")
\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex")
\begin{document}
\input 2009-2-C4-prova-1.dnt
% (find-angg "LATEX/2009-2-C4-prova-1-notas.tex")
%*
% (eedn4-51-bounded)
% (find-fline "~/PURO/diarios_de_classe/")
%Index of the slides:
%\msk
% To update the list of slides uncomment this line:
%\makelos{tmp.los}
% then rerun LaTeX on this file, and insert the contents of "tmp.los"
% below, by hand (i.e., with "insert-file"):
% (find-fline "tmp.los")
% (insert-file "tmp.los")
\def\sen{\operatorname{sen}}
\def\pmat#1{\begin{pmatrix} #1 \end{pmatrix}}
\def\bmat#1{\left|\begin{matrix} #1 \end{matrix}\right|}
\def\sm#1{\begin{smallmatrix} #1 \end{smallmatrix}}
\def\bsm#1{\left|\begin{smallmatrix} #1 \end{smallmatrix}\right|}
\def\psm#1{\left(\begin{smallmatrix} #1 \end{smallmatrix}\right)}
\def\subst#1{\left[\begin{smallmatrix} #1 \end{smallmatrix}\right]}
Cálculo 4 - Primeira Prova (P1)
PURO-UFF - 2009.2
28/outubro/2009
Prof: Eduardo Ochs
\bsk
\bsk
\noindent {\bf (1)} (Total: 4.0 pontos). Seja $B_{xy} =
\sst{(x,y)}{xÝ[1,2], yÝ[x^2,2x^2]}$. Considere a mudança de variáveis:
%
$$\pmat{u \\ v} := \pmat{x \\ y/x^2}$$
%
Ela leva a região $B_{xy}$, contida no plano $(x,y)$, numa região
$B_{uv}$ do plano $(u,v)$.
\ssk
a) (1.0 pts) Represente graficamente as regiões $B_{xy}$ e $B_{uv}$.
\ssk
b) (2.0 pts) Complete:
%
$$\int_{x=1}^{x=2} \int_{y=x^2}^{y=2x^2} f(x,y)\,dy\,dx
= \int_{u=\ldots}^{u=\ldots} \int_{v=\ldots}^{v=\ldots} \ldots\,dv\,du
$$
\ssk
c) (1.0 pts) Inverta a ordem de integração nas duas integrais do item (b).
\bsk
% \bsk
\noindent {\bf (2)} (Total: 1.0 ponto). Calcule o volume de:
%
$$ S = \sst{(x,y,z)}{x,yÝ[0,1], \, x\ge y,\, zÝ[xy,2xy]}$$
\bsk
% \bsk
\noindent {\bf (3)} (Total: 2.5 pontos). Calcule a área de:
%
$$ P = \sst{(x,y,z)}{x^2+y^2 \le 1, \, z = 1-(x^2+y^2)}$$
\bsk
\noindent {\bf (4)} (Total: 2.5 pontos). Seja:
%
$$ C = \sst{(x,y)}{(x-2)^2 + (y-1)^2 \le 1, \, x \le 2, y \le 1}.$$
a) (1.0 pts) Encontre uma mudança de variáveis que transforme $C$ num
retângulo.
b) (1.5 pts) Use esta mudança para transformar $\int\!\!\int_C
f(x,y)\,dx\,dy$ numa integral sobre um retângulo.
\bsk
\bsk
\bsk
\newpage
{\setlength{\parindent}{0pt}
{\bf Algumas fórmulas:}
Área de uma superfície $z=z(x,y)$ sobre uma região $B \subset \R^2$:
%
$$\int\int_B \sqrt{1 + z_x^2 + z_y^2} \;dx\,dy$$
Coordenadas polares:
%
$$
\begin{array}{rcl}
x &=& r \cos \\
y &=& r \sen \\
r^2 &=& x^2 + y^2 \\
\end{array}
\qquad
dx\,dy = \bsm{x_r & x_ \\ y_r & y_} \,dr\,d = r\,dr\,d
$$
Um modo de escrever a substituição (na integral simples):
%
$$\int_{t=\sqrt\pi}^{t=\sqrt{2\pi}} (\sen t^2)\, 2t \, dt =
\subst{x = t^2 \\ t = \sqrt x \\ dx = 2t \, dt} \int_{x=\pi}^{x=2\pi} \sen x \, dx
$$
\bsk
\bsk
A prova é para ser feita em duas horas, sem consulta.
Responda claramente e justifique cada passo.
Lembre que a correção irá julgar o que você escreveu, e
que é impossível ler o que você pensou mas não escreveu.
Lembre que a resposta esperada para cada questão não é só
uma fórmula ou um número --- a ``resposta certa'' é um
raciocínio claro e convincente.
Outra dica: {\sl confira as suas respostas!}
\ssk
{\bf Boa prova!}
}
\newpage
{\bf Mini-gabarito:}
(Versão preliminar, incompleta e com erros, 2009nov25)
% (find-kopkadaly4text "\n\\includegraphics[llx,lly]")
% (find-kopkadaly4text "with the graphicx package")
\noindent {\bf (1a)} (1.0 pts):
$B_{xy} = \sm{\includegraphics[scale=1.0]{2009-2-C4-prova-1-a.eps}}$,
$B_{uv} = [1,2]×[1,2]$
\noindent {\bf (1b)} (2.0 pts):
$\psm{u \\ v} = \psm{x \\ yx^2}$,
$\psm{x \\ y} = \psm{u \\ vu^2}$,
$dx\,dy = \bsm{x_u & x_v \\ y_u & y_v} du\,dv
= \bsm{1 & 0 \\ 2vu & u^2} du\,dv
= u^2 du \, dv$
$\int_{x=1}^{x=2} \int_{y=x^2}^{y=2x^2} f(x,y) dy\,dx =
\int_{u=1}^{u=2} \int_{v=1}^{v=2} f(u,vu^2) u^2\,dv\,du$
\noindent {\bf (1c)} (1.0 pts):
$\int_{y=1}^{y=2} \int_{x=1} ^{x=\sqrt{y}} f(x,y) dx\,dy +
\int_{y=2}^{y=4} \int_{x=\sqrt{y/2}}^{\sqrt{y}} f(x,y) dx\,dy +
\int_{y=4}^{y=8} \int_{x=\sqrt{y/2}}^{x=2} f(x,y) dx\,dy$
\msk
\noindent {\bf (2)} (1.0 pts):
$S_{xy} = \sst{(x,y)}{xÝ[0,1], yÝ[0,x]}$
$¯{Vol}(X) = \int_{x=0}^{x=1} \int_{y=0}^{y=x} 2xy-xy\,dy\,dx
= \int_{x=0}^{x=1} x \int_{y=0}^{y=x} y \, dy\,dx
= \int_{x=0}^{x=1} x \frac{x^2}{2} \,dx
= \frac{1}{2} \int_{x=0}^{x=1} x^3 \,dx
= \frac{1}{2} \frac{x^4}{x} |_{x=0}^{x=1}
= \frac{1}{8}$
\msk
\noindent {\bf (3)} (2.5 pts):
$z = 1 - (x^2+y^2)$,
$z_x = -2x$,
$z_y = -2y$
$\sqrt{1 + z_x^2 + z_y^2} = \sqrt{1 + 4x^2 + 4y^2} = \sqrt{1+4r^2}$
$\text{Área}(P) = \int\!\!\int_{P_{xy}} \sqrt{1+4r^2} dx\,dy
= \int\!\!\int_{P_{r}} \sqrt{1+4r^2} r\,dr\,d
= 2\pi \int_{r=0}^{r=1} \sqrt{1+4r^2} r\,dr
= \subst{u=r^2 \\ r=\sqrt{u} \\ du=2r\,dr}
2\pi \int_{u=0}^{u=1} \sqrt{1+4u} \frac{1}{2}\,du
= ...
= \frac{\pi}{6}(5^{3/2}-1)$
\msk
\noindent {\bf (4a)} (1.0 pts):
\noindent {\bf (4b)} (1.5 pts):
\end{document}
% (find-maximacvsnode "Functions and Variables for draw" "Function: set_draw_defaults")
% (find-maximacvsnode "Functions and Variables for draw" "object: polygon")
% (find-maximacvsnode "Functions and Variables for draw" "object: rectangle")
% (find-maximacvsnode "Functions and Variables for draw" "object: bars")
% (find-maximacvsnode "Functions and Variables for draw" "object: parametric")
% http://www.telefonica.net/web2/biomates/maxima/gpdraw/parametric/index.html
% (find-maximacvsnode "Functions and Variables for draw" "option: eps_width")
% (find-maximacvsnode "Functions and Variables for draw" "option: eps_height")
* (eepitch-maximacvs)
* (eepitch-kill)
* (eepitch-maximacvs)
load(draw);
set_draw_defaults();
OptsR : [xrange = [0, 2], yrange = [0, 8]];
OptsG : [grid = true, axis_top =false, axis_right = false];
OptsG : [grid = false, axis_top =false, axis_right = false];
OptsT : [terminal = screen];
OptsEps(w, h, fname) := [terminal = eps, eps_width = w, eps_height = h, file_name = fname];
hif(x) := 2 * x^2;
lowf(x) := x^2;
Curves : [explicit(hif(x), x, 0, 2), explicit(lowf(x), x, 0, 2)];
Verticals : [parametric(1, y, y, lowf(1), hif(1)), parametric(2, y, y, lowf(2), hif(2))];
OptsE : OptsEps(6 * 0.6, 8 * 0.6, "/tmp/foo");
OptsE : OptsEps(6 * 0.6, 8 * 0.6, "2009-2-C4-prova-1-a");
apply(draw2d, append(OptsR, OptsG, OptsT, Curves, Verticals));
apply(draw2d, append(OptsR, OptsG, OptsE, Curves, Verticals));
*;; (find-fline "/tmp/")
*;; (find-pspage "/tmp/foo.eps")
*;; (find-pspage "2009-2-C4-prova-1-a.eps")
parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi)
key = "This is the parametric one!!",
parametric(2*cos(rrr),rrr^2,rrr,0,2*%pi))$
set_draw_defaults();
set_draw_defaults(grid = true, axis_top =false, axis_right = false);
set_draw_defaults(terminal = screen);
draw2d(fill_color = grey,
filled_func = x^2,
explicit(2 * x^2, x, 0, 2));
filled_func = false,
explicit(lowf(x), x, 0, x2),
explicit(hif(x), x, 0, x2)
);
draw2d(terminal = eps,
file_name = "2009-2-C2-prova-1",
eps_width = 13 * 0.6,
eps_height = 7 * 0.6,
/*
* (find-pspage "2009-2-C2-prova-1.eps")
*/
axis_top = false,
axis_right = false,
xrange = [0, 13],
yrange = [0, 7],
fill_color = grey,
filled_func = lowf(x),
explicit(hif(x), x, 0, x2),
filled_func = false,
explicit(lowf(x), x, 0, x2),
explicit(hif(x), x, 0, x2)
);
;; (find-maximacvsnode "")
# (find-maximacvsnode "Functions and Variables for draw" "filled_func")
%*
\end{document}
% Local Variables:
% coding: raw-text-unix
% ee-anchor-format: "«%s»"
% End: